
Migrating a
Two-Tier Application
to Azure

A Hands-on Walkthrough of
Azure Infrastructure, Platform,
and Container Services
—
Peter De Tender

Migrating a Two-Tier
Application to Azure

A Hands-on Walkthrough of Azure
Infrastructure, Platform,
and Container Services

Peter De Tender

Migrating a Two-Tier Application to Azure

ISBN-13 (pbk): 978-1-4842-6436-2			 ISBN-13 (electronic): 978-1-4842-6437-9
https://doi.org/10.1007/978-1-4842-6437-9

Copyright © 2021 by Peter De Tender

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6436-2. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Peter De Tender
Lokeren, Belgium

https://doi.org/10.1007/978-1-4842-6437-9

I dedicate this book to Ivan De Rop, head teacher in my senior year in
high school, for believing in my skills and passion for information

technology, although I did business management studies.

v

Table of Contents

Chapter 1: �Introduction��� 1

Migrating a Two-Tier Application to Azure Using Different Architectures and
DevOps Best Practices��� 1

Setting the Scene��� 1

Abstract and Learning Objectives�� 2

Technical Requirements��� 4

Azure Subscription��� 4

Naming Conventions�� 5

Other Requirements��� 5

Alternative Approach�� 5

Final Remarks�� 6

Chapter 2: �Prerequisite Lab: Deploying Your Lab Virtual Machine���������������������������� 7

Prerequisite lab: Preparing your (Azure) environment��� 7

What You Will Learn�� 7

Time Estimate��� 7

Task 1: Deploying the lab jumpVM virtual machine using Azure Portal
template deployment�� 8

Task 2: Cloning the setup scripts from GitHub��� 20

Summary��� 21

About the Author�� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

vi

Chapter 3: Lab 1: Deploying an Azure Virtual Machine Baseline
Application Workload�� 23

Lab 1: Deploying the baseline virtual machine environment using an
ARM template from within Visual Studio 2019�� 23

What You Will Learn��� 23

Time Estimate�� 23

Prerequisites�� 24

Task 1: Understanding the ARM template building blocks��� 24

Task 2: Running an ARM template deployment from Visual Studio 2019������������������������������������� 31

Summary��� 49

Chapter 4: �Lab 2: Performing Assessment of Your As-Is Situation������������������������� 51

Lab 2: Performing assessment of your as-is situation��� 51

What You Will Learn�� 51

Time Estimate��� 51

Prerequisites�� 51

Task 1: Running a SQL Server assessment using Data Migration Assistant�������������������������� 52

Task 2: Running a web server assessment using Azure App Service Migration Assistant����� 62

Summary��� 66

Chapter 5: Lab 3: Deploying an Azure SQL Database and Migrating
from SQLVM��� 67

Lab 3: Deploying an Azure SQL database and migrating from SQLVM��� 67

What You Will Learn�� 67

Time Estimate��� 68

Prerequisites�� 68

Scenario Diagram��� 68

Task 1: Deploying a new Azure SQL Server instance��� 68

Task 2: Performing a SQL database migration from a SQL virtual machine
to SQL Azure, using SQL Data Migration Assistant��� 78

Task 3 (Optional): Using SQL Server Management Studio to migrate from
SQLVM to a SQL Azure instance�� 93

Task 4: Defining a hybrid connection from a WebVM to an Azure SQL database����������������� 102

Summary��� 107

Table of Contents

vii

Chapter 6: �Lab 4: Deploying an Azure Web App and Migrating from WebVM�������� 109

Lab 4: Deploying an Azure Web App and migrating from WebVM�� 109

What You Will Learn�� 109

Time Estimate��� 109

Prerequisites�� 109

Scenario Diagram��� 110

Task 1: Publish an ASP.NET project to Azure Web Apps from Within Visual Studio 2019������ 110

Task 2: Publishing the source code to Azure Web Apps��� 117

Task 3: Migrating a web application from Azure App Service Migration Assistant��������������� 125

Summary��� 130

Chapter 7: �Lab 5: Deploying Docker and Running Azure Container Workloads����� 131

What You Will Learn��� 131

Time Estimate�� 131

Prerequisites�� 132

Scenario Diagram�� 132

Tasks�� 132

Task 1: Installing Docker Enterprise Edition (trial) for Windows Server 2019
on the lab jumpVM��� 133

Task 2: Validating and running basic Docker commands and containers���������������������������������� 139

Task 3: Integrating Docker extension in Visual Studio Code�� 149

Task 4: Deploying and operating Azure Container Registry��� 155

Task 5: Deploying and running Azure Container Instance�� 162

Task 5: Running an Azure Container Instance from a Docker image in Azure
Container Registry��� 165

Task 6: Deploying and operating Azure Web App for Containers�� 181

Summary��� 186

Chapter 8: �Lab 6: Deploying and Running Azure Kubernetes Service (AKS)��������� 187

What You Will Learn��� 187

Time Estimate�� 187

Prerequisites�� 187

Table of Contents

viii

Scenario Diagram�� 188

Task 1: Deploying Azure Kubernetes Service using Azure CLI 2.0��� 188

Task 2: Configuring RBAC for managing Azure Kubernetes Service and ACR integration���������� 193

Task 3: Running a Docker container image from Azure Container Registry in
Azure Kubernetes Service�� 196

Summary��� 206

Chapter 9: �Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)����� 207

What You Will Learn��� 207

Time Estimate�� 207

Task 1: Enabling container scalability in Azure Kubernetes Service (AKS)�������������������������������� 208

Task 2: Monitoring Azure Kubernetes Service in Azure�� 215

Task 3: Managing Kubernetes from Visual Studio Code��� 225

Summary��� 231

Chapter 10: �Lab 8: Deploying Azure Workloads Using Azure DevOps������������������� 233

What You Will Learn��� 233

Time Estimate�� 233

Prerequisites�� 234

Scenario Diagram�� 234

Task 1: Deploying an Azure DevOps organization�� 234

Task 2: Introduction to source control with Azure DevOps Repos�� 241

Task 3: Creating and deploying an Azure build pipeline for your application����������������������������� 254

Task 4: Building a release pipeline in Azure DevOps�� 263

Task 5: Creating and pushing a Docker container to ACR�� 279

Task 6: Creating a release pipeline for Docker containers from ACR��� 294

Task 7: Creating an Azure DevOps pipeline to deploy an ACR container to
Azure Kubernetes Service (AKS)�� 307

Summary��� 316

�Index�� 317

Table of Contents

ix

About the Author

Peter De Tender has more than 20 years of experience

in architecting and deploying Microsoft datacenter

technologies. Since early 2012, he started shifting to cloud

technologies (Office 365, Intune) and quickly jumped onto

the Azure platform, working as cloud solution architect and

trainer, out of his own company. Since September 2019,

Peter moved into an FTE role within Microsoft Corp in the

prestigious Azure Technical Trainer team, providing Azure

readiness workshops to larger customers and partners

across the globe. 

Peter was an Azure MVP for 5 years and IS a Microsoft Certified Trainer for more

than 12 years and is still actively involved in the community as speaker, technical writer,

and author.

You can follow Peter on Twitter @pdtit and check his technical blog,

https://www.007FFFLearning.com.

https://www.007FFFLearning.com

xi

About the Technical Reviewer

Amita Thukral is an IT professional, an NIIT degree holder,

and ITIL certified. She has more than 16 years of extensive

experience working with top IT organizations like Wipro

Infotech, Dell India, Hughes Software Systems, and Xcad

Agencies. She worked as a technical editor for Leanpub

Publishing with author Peter De Tender (MVP) for a web

book “Migrating a dotnetcore 2-tier application to Azure,

using different architectures and DevOps best practices.” 

As a service delivery manager, she has handled multiple

IT instructor–led and online trainings across various

global locations. As a project manager, she was responsible

for running cloud computing projects, like Azure and Dynamics 365, and prepared

comprehensive action plans, including resources, timeframes, and budgets for projects.

She worked on updating, reviewing, and building documentation and content of the

lab guides and ebooks for several cloud-based technical projects. She has performed

coordinating tasks like planning and scheduling, along with administrative duties

like maintaining project documentation, database management, and collaborating

with clients and internal teams to deliver results. She ensured that all projects were

completed on time and within budget and met high-quality standards.

xiii

Acknowledgments

After writing seven technical books, it’s hard to come up with original thank-you words.

Anyone reading this book knows this is a work of time, dedication, and passion for

technology, as well as a passion for sharing knowledge. I am fortunate enough to have a

wife supporting me in this. But I’m no longer allowed to thank her (her own words), as

sharing knowledge and helping people is what makes me who I am.

That said, I owe a big thanks to Spandana Chatterjee and Divya Modi from Apress,

who picked up my “Azure hands-on labs” self-published material from Leanpub

and offered to take over the content and publish it through Apress. This was the best

opportunity to update the technical content, make it current, and add new topics to

the exercises. And your audience reach-out is much broader than what I could ever get

myself, so you help in spreading the Azure knowledge.

I’d also like to thank my technical reviewer, Amita Thukral – my faraway friend from

India, always eager to help where she can and at the same time living the “continuous

learning” life. You are professional, have an amazing drive for details, and are overall a

lovely person to work with.

And Wim Matthyssen, community buddy and fellow Azure expert, thanks for

jumping in last minute to give your technical blessing on the flow, wording, and lab

scenarios and overall validate them.

Both of you pushed up the level of quality.

1
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_1

CHAPTER 1

Introduction

�Migrating a Two-Tier Application to Azure Using
Different Architectures and DevOps Best Practices
�Setting the Scene
You are part of an organization that is running an e-commerce platform application, at

present using Windows Server on-premises infrastructure, based on a virtual Windows

Server 2012 R2 web server running Internet Information Services (IIS) and a second

Windows Server 2012 R2 virtual machine (VM) running Microsoft SQL Server 2014

database services.

The business has approved a migration of this business-critical workload to Azure,

and you are nominated as the cloud solution engineer for this project. No decision has

been made yet on what the final architecture should or will look like. Your first task is

building different Proof of Concepts in your Azure environment, to test out the different

architectures available today, to host your application workload:

–– Infrastructure as a Service (IAAS), using Azure Virtual Machines

–– Platform as a Service (PAAS), using Azure Web Apps and Azure SQL

–– Containers as a Service (CAAS), using Azure Container Instance (ACI)

and Azure Kubernetes Service (AKS)

At the same time, your CIO wants to make use of this project to switch from a more

traditional mode of operations, with barriers between IT sysadmin teams and developer

teams, to a “DevOps” way of working. Therefore, you are tasked to explore Azure DevOps

and determine where CI/CD pipelines, together with other capabilities from Azure DevOps,

can assist in optimizing the deployment as well as optimizing the running operations of this

e-commerce platform, especially when deploying updates to the application.

https://doi.org/10.1007/978-1-4842-6437-9_1#DOI

2

As you are new to the continuous changes in Azure, you want to make sure this

process goes as smooth as possible, starting from the assessment over migration to

performing day-to-day operations.

�Abstract and Learning Objectives
This book enables anyone to learn, understand, and build a Proof of Concept, by

performing a platform migration of a two-tiered application workload to Azure public

cloud, leveraging on different Azure Infrastructure as a Service, Azure Platform as a

Service (PAAS), and Azure container offerings like Azure Container Instance (ACI) and

Azure Kubernetes Service (AKS).

The focus of the book is having a true hands-on lab experience, by going through the

following exercises and tasks:

•	 Deploying your “lab virtual machine”

•	 Deploying a two-tier Azure Virtual Machine (web server and SQL

database server) using Infrastructure as Code (IAC) concepts with

ARM (Azure Resource Manager) template automation in Visual

Studio 2019

•	 Performing a proper assessment of the as-is WebVM and

SQLVM infrastructure using Microsoft assessment tools

•	 Migrating a SQL Server 2014 database to Azure SQL PaaS

(lift and shift)

•	 Migrating a .NET Core web application to Azure Web Apps

(lift and shift)

•	 Containerizing a .NET Core web application using Docker and

pushing to Azure Container Registry (ACR)

•	 Running a containerized application in Azure Container

Instance (ACI) and Azure Web App for Containers

•	 Running a containerized application in Azure Kubernetes

Service (AKS)

Chapter 1 Introduction

3

•	 Deploying Azure DevOps and building a CI/CD pipeline for the

sample e-commerce application

•	 Managing and monitoring Azure Kubernetes Service (AKS) and other

Azure Monitor capabilities

Starting from an (optional but highly recommended for consistency) ARM template–

based deployment of a lab virtual machine, readers get introduced to the basics of

automating Azure resource deployments using Visual Studio and Azure Resource

Manager (ARM) templates, together with additional Infrastructure as Code concepts like

Custom Script Extension and PowerShell Desired State Configuration (DSC).

Next, readers learn about the importance of performing proper assessments and

what tools Microsoft offers to help in this migration preparation phase. Once the

application has been deployed on Azure Virtual Machines, readers learn about Microsoft

SQL Server database migration to Azure SQL PAAS, as well as deploying and migrating

web applications to Azure Web Apps.

After these foundational platform components, the following chapters will totally

focus on the core concepts and advantages of using containers for running business

workloads, based on Docker, Azure Container Registry (ACR), Azure Container Instance

(ACI), and Web App for Containers, as well as how to enable container orchestration and

cloud scale using Azure Kubernetes Service (AKS).

In the last part of the book, readers get introduced to Azure DevOps, the Microsoft

application lifecycle environment, helping in building a CI/CD pipeline to publish

workloads using the DevOps principles and concepts, showing the integration with

the rest of the already-touched-on Azure services like Azure Web Apps and Azure

Kubernetes Service (AKS), closing the exercises with a chapter on Azure monitoring and

operations and what tools Azure has available to assist your IT teams in this challenge.

Note T he Proof of Concept lab scenario is built in such a way that each lab
exercise is building on top of the previous lab exercise in sequence. Given the
dependencies across different labs, make sure you finish each lab exercise
successfully, before continuing on to the next lab.

Chapter 1 Introduction

4

�Technical Requirements
Before being able to perform the hands-on tasks in this book, make sure you meet each

of the technical requirements:

–– Azure subscription with full administrative permissions

–– Naming conventions

�Azure Subscription
Make sure you have (full administrative) access to an Azure subscription, allowing you

to deploy the different Azure resources being used throughout the exercises. You can use

an Azure free or trial subscription or use any paid subscription.

Signing up for a free/trial subscription can be done from here: https://signup.

azure.com/signup?offer=ms-azr-0044p&appId=102&l=en-gb&correlationId=37037FE

60CF76B40251371B40DDF6AB9

If you go through all exercises, estimate an average consumption of 20–30 USD,

assuming you shut down or delete the resources that are no longer in use or required.

Chapter 1 Introduction

https://signup.azure.com/signup?offer=ms-azr-0044p&appId=102&l=en-gb&correlationId=37037FE60CF76B40251371B40DDF6AB9
https://signup.azure.com/signup?offer=ms-azr-0044p&appId=102&l=en-gb&correlationId=37037FE60CF76B40251371B40DDF6AB9
https://signup.azure.com/signup?offer=ms-azr-0044p&appId=102&l=en-gb&correlationId=37037FE60CF76B40251371B40DDF6AB9

5

�Naming Conventions

Important  Most Azure resources require unique names. Throughout the
lab steps, we will identify the naming convention for the given resources as
“[SUFFIX]” as part of resource names. You should replace this with a unique
string, e.g., your own initials, guaranteeing those resources get uniquely named
and not blocking a successful deployment.

�Other Requirements
Readers need a local client admin machine, running a recent Operating System, allowing

them to

–– Browse to https://portal.azure.com from a recent browser.

–– Establish a secured Remote Desktop (RDP) session to a lab jumpVM

running Windows Server 2019.

�Alternative Approach
Where the lab scenario assumes all exercises will be performed from within a lab

jumpVM (see Chapter 2 on how to get started with this deployment), readers could also

execute (most, if not all) steps from their local client machine, if that is what they prefer.

The following tools are being used throughout the lab exercises:

–– Visual Studio 2019 community edition (updated to latest version)

–– Docker for Windows (updated to latest version)

–– Azure CLI 2.0 (updated to latest version)

–– Kubernetes CLI (updated to latest version)

–– SimplCommerce Open Source e-commerce platform example

(http://www.simplcommerce.com)

Chapter 1 Introduction

https://portal.azure.com
http://www.simplcommerce.com

6

Note  Make sure you have these tools installed prior to the workshop if you are
not using the lab jumpVM. You should also have full administrator rights on your
machine to execute certain steps in using these tools.

�Final Remarks
Due to the continuously evolving nature of Azure, Azure services, the Azure Portal,

and other tools we will be using for the exercises, it might be that some screenshots or

wordings do not match what you will see on your end. We apologize for this already,

although there isn’t much we can do about it. If the differences are too many, it would be

almost impossible to execute the exercises. Please have a look at our GitHub repository

http://www.apress.com/source-code for any updates and errata.

We hope you enjoy the different exercises, learn from them, and find them useful

in your day-to-day job or journey in which you explore Azure capabilities. Do not

hesitate reaching out at peter@pdtit.be or @pdtit (Twitter) in case you have any

questions. We are here to help you making this a successful learning path.

Chapter 1 Introduction

http://www.apress.com/source-code

7
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_2

CHAPTER 2

Prerequisite Lab:
Deploying Your Lab
Virtual Machine

�Prerequisite lab: Preparing your (Azure)
environment
�What You Will Learn
In this first lab, you prepare the baseline for executing all hands-on lab exercises:

–– Log on to your Azure subscription.

–– Deploy the lab jumpVM within your Azure subscription.

–– Download the required source files from GitHub to the lab jumpVM.

�Time Estimate
This lab is estimated to take 45 min, assuming your Azure subscription is already

available.

https://doi.org/10.1007/978-1-4842-6437-9_2#DOI

8

�Task 1: Deploying the lab jumpVM virtual machine using
Azure Portal template deployment
In this task, you start deploying the “lab jumpVM” virtual machine in your Azure

environment. This machine becomes the starting point for all future exercises, as it

has most required tools already installed. The deployment is based on an ARM (Azure

Resource Manager) template in a publicly shared GitHub repository.

	 1.	 Once you are logged on to your Azure subscription, select Create
a Resource.

	 2.	 In the Search Azure Marketplace field, type “template

deployment”.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

9

	 3.	 And select Template deployment (deploy using custom
templates) from the list of Marketplace results, followed by

clicking the Create button.

	 4.	 This opens the Custom deployment blade. Here, select “Build

your own template in the editor.”

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

10

	 5.	 First, from a second tab in your browser window, go to the

following URL on GitHub, browsing to the source files repository

for this lab, specifically the JumpVM folder:

http://www.apress.com/source-code.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

http://www.apress.com/source-code

11

	 6.	 Select the azuredeploy.json object in there. This exposes the

details of the actual JSON deployment file.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

12

	 7.	 Click the Raw button, to open the actual file in your browser.

	 8.	 Your browser should show the content as follows:

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

13

	 9.	 Here, select all lines in the JSON file, and copy its content to the

clipboard.

	 10.	 Go back to the Azure Portal. From “the edit template” blade,

remove the first six lines of code you see in there, and paste in
the JSON content from the clipboard.

	 11.	 “The edit template” blade should recognize the content of the

JSON file, showing the details in the JSON Outline on the left.

	 12.	 Click the Save button.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

14

	 13.	 This redirects you back to the Custom deployment blade, from

where you will execute the actual template deployment, filling in

the required fields as follows:

–– Subscription: Your Azure subscription

–– Resource group: Create New/[SUFFIX]-JumpVMRG

–– Location: Your closest by Azure region

–– Admin Username: labadmin (this information is picked up from the ARM

template; although you could change this, we recommend you to not do so

for consistency with the lab guide instructions and avoiding any errors

during later deployment steps)

–– Admin Password: L@BadminPa55w.rd (this information is picked up from

the ARM template; although you could change this, we recommend you to

not do so for consistency with the lab guide instructions and avoiding any

errors during later deployment steps)

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

15

	 14.	 When all fields have been completed, scroll down in the blade.

Under the Terms and Conditions section, check “I agree to the
terms and conditions stated above,” and click the Purchase

button.

	 15.	 This sets off the actual Azure resource deployment process.

From the Notifications area, you can get update information

about the deployment.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

16

	 16.	 If you click “Deployment in progress…,” you will get redirected to

the Microsoft.Template Overview blade, showing you the details of

each Azure resource getting deployed.

	 17.	 Wait for the deployment to complete successfully. Note this could
take up to 25–30 minutes, because of the custom scripts we
run during the installation process, which you can see from this

detailed view or from the Notifications area.

	 18.	 From the notification message, click “Go to resource group.” (If

you already closed the notification message, from the Azure Portal

navigation menu to the left, select Resource groups.)

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

17

	 19.	 Click the jumpvm Azure Virtual Machine resource. This

redirects you to the detailed blade for the jumpvm resource. Here,

click the Connect button.

Note B ecause the VM is linked to a “basic” public IP address resource, all
incoming TCPIP traffic is allowed. Therefore, incoming RDP is just working. In a
real-life scenario, this VM would be configured with Network Security Group (NSG)
rules, only allowing specific traffic.

	 20.	 From the Connect to virtual machine blade, notice the public
IP address and port 3389. This allows you to establish an RDP

session to the Azure VM. Do this by clicking the Download RDP
File button.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

18

(Note: If your local network blocks direct RDP to Azure VMs,

consider having a look at Azure Bastion, an Azure service

performing HTML5 browser-based routing to RDP or SSH-

enabled machines. Specifically for this JumpVM, we offer an ARM

template in the same GitHub repo as the JumpVM: https://

github.com/pdtit/2TierAzureMigration/blob/master/JumpVM/

bastion-template.json.

	 21.	 Open the downloaded RDP file; You are prompted for your

credentials in the next step, provide the VM administrator name
(labadmin) and its password (L@BadminPa55w.rd), which are
the default.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

https://github.com/pdtit/2TierAzureMigration/blob/master/JumpVM/bastion-template.json
https://github.com/pdtit/2TierAzureMigration/blob/master/JumpVM/bastion-template.json
https://github.com/pdtit/2TierAzureMigration/blob/master/JumpVM/bastion-template.json

19

	 22.	 From the appearing popup window, set the flag to “Don’t ask me

again for connections to this computer.”

	 23.	 Your Remote Desktop session to this Azure VM gets established.

	 24.	 A popup message will appear, asking if you want to allow network

discovery; close this popup using the No button.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

20

	 25.	 Next, “Server Manager” will open automatically. Close this for

now. You will arrive at the desktop.

�Task 2: Cloning the setup scripts from GitHub
In this task, you run Git command-line steps, to clone the necessary source files from

GitHub to your lab jumpVM.

	 1.	 From the lab jumpVM, open a command prompt.

	 2.	 Run the following command:

git clone http://www.apress.com/source-code

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

http://www.apress.com/source-code

21

	 3.	 This downloads all lab-related source files to the C drive of the

JumpVM, into the 2TierAzureMigration folder.

�Summary
This completes this prerequisite task, in which you deployed a Windows 2019 Azure VM

as Jump server, by using Azure Resource Manager template–based deployment.

You will use this JumpVM for all future exercises requiring “tools” like Visual Studio,

Docker, SQL Server Management Studio, and so on.

Chapter 2 Prerequisite Lab: Deploying Your Lab Virtual Machine

23
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_3

CHAPTER 3

Lab 1: Deploying an Azure
Virtual Machine Baseline
Application Workload

�Lab 1: Deploying the baseline virtual machine
environment using an ARM template from within
Visual Studio 2019

�What You Will Learn
In this task, you are guided through the definition of an ARM template, which is used

to deploy the baseline virtual machine WebVM and SQLVM topology you need in the

next lab. After you understand the core building blocks within the template, you run the

actual template deployment from within Visual Studio 2019.

�Time Estimate
This lab is estimated to take 60 min, assuming your Azure subscription is already

available.

https://doi.org/10.1007/978-1-4842-6437-9_3#DOI

24

�Prerequisites

Note  The assumption is this lab will be performed from within the lab jumpVM,
unless you choose to use your own administrative workstation for this. See
Chapter 2 for instructions on how to deploy this VM if needed.

�Task 1: Understanding the ARM template building
blocks
The focus of this first task is becoming familiar with the baseline VM deployment for

future labs, using ARM template building blocks. As part of Infrastructure as Code (IAC),

ARM templates can be used to automate the deployment and configuration of Azure-

running resources. Out of this template, you deploy the following Azure resources:

–– Azure Virtual Network “AzTrainingVNET,” with two subnets

–– WebVM virtual machine running IIS on Windows Server 2012 R2:

•	 Azure resources themselves

•	 WebDSC.ps1, as part of PowerShell DSC VM Extension

•	 Customize-winVM.ps1, as part of Custom Script Extension

–– SQLVM virtual machine running SQL Server 2014 on Windows

Server 2012 R2:

•	 Azure resources themselves

•	 SQLDSC.ps1, as part of PowerShell DSC VM Extension

•	 Customize-winVM.ps1, as part of Custom Script Extension

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

25

	 1.	 From the lab JumpVM desktop, launch Visual Studio 2019.
You are prompted with a Welcome popup to authenticate.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

26

	 2.	 Click the Sign in button, which will open the Microsoft “Sign in

to your account” window; provide your Azure admin credentials

here.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

27

	 3.	 Wait for Visual Studio 2019 to launch. Select a theme of choice for

the layout of Visual Studio 2019.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

28

	 4.	 Continue to Visual Studio by clicking the “Start Visual Studio”

button.

	 5.	 From the “Get started” window, select “Open a project or
solution.”

	 6.	 Browse to the 2TierAzureMigration folder on the JumpVM, and

select the WebVM-SQLVM-ARMDeploy folder. From here, select
the AzureResourceGroup44.sln file. Click Open.

Note I f you don’t have this source files folder, see “Task 2” in Chapter 2 to get
the files.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

29

	 7.	 Make yourself familiar with the different files and folders in this

project, using the Solution Explorer view.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

30

	 8.	 In short, these files are doing the following:

File Purpose

Azuredeploy.json The actual ARM template deployment file, which creates

the different Azure resources for both WebVM and SQLVM

infrastructure.

Azuredeploy.parameters.json The ARM template parameters file.

\CustomScripts\

Customize-WinVM.ps1

A PowerShell script, containing specific settings that get

applied to both VMs using PowerShell.

DSC\SQLDSC.ps1 A PowerShell script that is used to customize the installation

and configuration of SQL Server on the SQLVM:

−  Format disks.

− I nstall SQL Server 2017 + mgmt. tools.

−  Download simplcommerce.bak from Azure Storage.

− R un SQL database restore.

DSC\WebDSC.ps1 A PowerShell script that is used to customize the installation

and configuration of IIS web server on the WebVM:

− I nstall IIS core components + mgmt. tools.

− I nstall .NET framework 4.5.

− R un silent install of the dotnetcore modules.

Deploy-AzureResourceGroup.ps1 A PowerShell script that is used by VS2017 to run the actual

deployment of the ARM template.

	 9.	 Select the file azuredeploy.json to open it. This will load the

details in a separate window, showing the JSON Outline for this

ARM template.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

31

Note I f the JSON Outline view is not visible, open it from the top menu. Click
View ➤ Other Windows ➤ JSON Outline, to open the JSON viewer.

	 10.	 Read through the different files, to become familiar with the

actual Azure resources getting deployed and the core settings

used for this (VNET, subnets) as this will help in understanding

the base VM landscape of our workload.

�Task 2: Running an ARM template deployment
from Visual Studio 2019
In this task, you start deploying the “lab jumpVM” virtual machine in your Azure

environment. This machine becomes the starting point for all future exercises, as it has

most required tools already.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

32

	 1.	 From within the Solution Explorer window, select the

AzureResourceGroup44 project, and right-click it; and from the

context menu, select Deploy ➤ New….

	 2.	 In the appearing “Deploy to Resource Group” popup, complete

the following settings:

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

33

–– Subscription: Your Azure subscription

–– Resource group: Create New/[SUFFIX]-VMs – with location the one

closest to your location

–– Deployment template: azuredeploy.json

–– Template parameters file: azuredeploy.parameters.json

	 3.	 Before clicking the Deploy button, complete some additional

deployment settings by clicking the Edit Parameters… button.

Basically, the only required change here is providing a new unique

DNS name for the WebPublicIPDnsName parameter:

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

34

–– WebVMName: WebVM

–– WebVMAdminUserName: labadmin

–– WebVMAdminPassword: L@BadminPa55w.rd (do not alter this
password, as otherwise the customization script later on won’t
work)

–– WebVMWindowsOSVersion: 2012-R2-Datacenter

–– WebPublicIPDnsName: [suffix]webvm<date> (all lowercase, no
complex characters)

–– SQLVMName: SQLVM

–– SQLVMAdminUserName: labadmin

–– SQLVMAdminPassword: L@BadminPa55w.rd (do not alter this
password, as otherwise the customization script later on won’t
work)

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

35

	 4.	 Check the “Save passwords as plain text in the parameters file.”

(Note: This is ok in this lab environment, but not recommended in

production deployments. If this option is not checked, you will get

a PowerShell window appearing, asking you for this administrator

password there.)

	 5.	 Once all settings have been completed in the Edit Parameters

popup window, click Save. You are redirected to the “Deploy to

Resource Group” window. Start the actual deployment by clicking

the Deploy button.

	 6.	 The Azure resource deployment kicks off, which can be followed

from the Visual Studio Output window. (For your info, this
deployment takes about 15–20 min. It might be a good time for
a break.)

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

36

	 7.	 While the deployment from Visual Studio is still running, open

your Internet browser, connect to http://portal.azure.com,

and authenticate with your Azure subscription credentials. Go to
Resource groups, and open the [SUFFIX]-VMs resource group
(RG). Here, you can see the different resources getting created.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

http://portal.azure.com

37

	 8.	 From the Resource groups blade, Settings section, click

Deployments.

	 9.	 This shows the actual running deployment task.

	 10.	 Click the deployment name (e.g., azuredeploy-0804-2321),
which shows you more details about the actual deployment)

process, including the already deployed resources.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

38

	 11.	 Wait for the deployment to complete successfully. This is

noticeable from within the Visual Studio Output window or from

within the Azure Portal Deployment blade you were in before.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

39

	 12.	 Close Visual Studio without saving changes to the project.

To verify all went fine during the deployment of the Azure

resources, as well as the customization and configuration using

PowerShell Desired State Configuration, we will validate if the

e-commerce webshop sample workload is running fine.

	 13.	 From within the Azure Portal, go to Resource groups, and select

the resource group where you deployed the VMs ([SUFFIX]-
VMs). In here, select the WebVM virtual machine by clicking it.

This opens the WebVM detailed blade.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

40

	 14.	 Notice the Public IP address of the WebVM resource. Open your
browser and connect to this IP address. After a few seconds, the

SimplCommerce webshop home page should become visible.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

41

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

42

	 15.	 Back in the Azure Portal, from your WebVM blade (within the

Azure Portal, go to Resource groups, and select the resource

group where you deployed the VMs ([SUFFIX]-VMs). In here,

select the WebVM virtual machine by clicking it. This opens the
WebVM detailed blade), select Overview ➤ Connect.

	 16.	 Click the Connect button, to open the Remote Dekstop session to

this WebVM virtual machine.

	 17.	 Here, log on with the credentials from the ARM template

(labadmin, L@BadminPa55w.rd) unless you changed those before

the deployment in Visual Studio.

	 18.	 From within the WebVM RDP session’s Start menu, search for

“IIS,” which resolves Internet Information Services Manager.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

43

	 19.	 Launch Internet Information Services Manager.

	 20.	 This deployment has a Default Web Site configured.

Close the Internet browser session on the WebVM.

	 21.	 Still from within the WebVM RDP session, start a new RDP

session to the SQLVM (this needs to happen from within the

WebVM, as the SQLVM has no public IP address attached to its

NIC, thus not reachable from the Internet directly), by clicking the

Start button and typing “mstsc”; this finds the Microsoft Remote

Desktop Connection. Launch it.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

44

	 22.	 Enter “sqlvm” as computer name; next, click the Connect button.

	 23.	 Provide the following credentials to authenticate:

User: labadmin

Password: L@BadminPa55w.rd

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

45

	 24.	 And click OK to continue.

	 25.	 When prompted with “The identity of the remote computer
cannot be verified” error, select “Don’t ask me again for
connections to this computer.”

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

46

	 26.	 Click Yes to open the RDP session. Wait for the desktop of the

SQLVM to load completely.

	 27.	 From the Start menu of the SQLVM, search for “SQL

management,” which will resolve a list of keywords and

applications. Here, select Microsoft SQL Server Management
Studio 18.

	 28.	 From SQL Server Management Studio, the “Connect to Server”

popup opens. Provide the following information:

–– Server type: Database Engine

–– Server name: SQLVM

–– Authentication: SQL Server Authentication

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

47

	 29.	 Click Connect to open the SQL Server connection.

	 30.	 Validate the SimplCommerce database object is available under

the Databases section of the server.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

48

	 31.	 Open the SimplCommerce database, by clicking the “+” in front

of the name; browse to Tables and click the “+” again here. This

opens a list of all tables within this database. Here, browse to dbo.
Catalog_Product and select it.

	 32.	 Next, right-click this table, to open the context menu. Here, select
“Edit Top 200 Rows.”

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

49

	 33.	 This shows a list of products in our sample e-commerce

application.

	 34.	 This confirms the deployment of the SQL Server VM was

successful.

This completes the task.

�Summary
In this lab, you started with deploying an ARM template from within the Azure Portal,

deploying a lab jumpVM virtual machine in Azure.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

50

In the next task, you learned how to deploy a more complex Azure environment,

again using an ARM template, where deployment was executed from within Visual

Studio 2017/2019, using ARM templates to deploy Azure resources, as well as relying on

Azure VM PowerShell DSC and Custom Script Extensions to fine-tune the configuration

of the WebVM and SQLVM virtual machines.

Chapter 3 Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload

51
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_4

CHAPTER 4

Lab 2: Performing
Assessment of Your
As-Is Situation

�Lab 2: Performing assessment of your as-is
situation
�What You Will Learn
In this second lab, you focus on performing the necessary assessment phase in your

simulated “on-premises” application landscape, by using Microsoft assessment tools:

–– Microsoft Data Migration Assistant (DMA)

–– Azure App Service Migration Assistant

�Time Estimate
This lab is estimated to take 30 min, assuming your Azure subscription is already

available and you successfully completed Lab 1, in which you deployed the baseline

setup with the WebVM and SQLVM.

�Prerequisites
Make sure you completed the ARM scenario deployment from Lab 1 before starting this

exercise, as it is continuing on the infrastructure deployed out of that lab.

https://doi.org/10.1007/978-1-4842-6437-9_4#DOI

52

�Task 1: Running a SQL Server assessment using Data
Migration Assistant
In short, you will perform the following tasks:

	 1.	 Install the Azure Data Migration Assistant on the WebVM.

	 2.	 Perform an assessment of the to-be-migrated database.

In this task, you download and install the Azure Data Migration Assistant.

	 1.	 Connect to the WebVM virtual machine using RDP, by selecting

the WebVM from the Virtual machines section in the Azure Portal

followed by selecting Connect.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

53

	 2.	 In the Connect blade, click Download RDP File. Once

downloaded, open the file. This will start the Remote Desktop,

asking for credentials. Here, select “Use a different account” and

provide the following credentials:

User account: labadmin

Password: L@BadminPa55w.rd

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

54

	 3.	 When you are prompted for a certificate security warning, select

Don’t ask me again… and click Yes to continue.

	 4.	 Once logged on to the desktop of the WebVM, open the browser,

and search for Azure Data Migration Assistant download, or

connect directly to the following URL: www.microsoft.com/en-

us/download/details.aspx?id=53595.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

http://www.microsoft.com/en-us/download/details.aspx?id=53595
http://www.microsoft.com/en-us/download/details.aspx?id=53595

55

	 5.	 Once the download is complete, launch the

DataMigrationAssistant.msi. Click Next to continue.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

56

	 6.	 Accept the license terms agreement, click Next, and confirm

by clicking the Install button. Wait for the install to complete

successfully.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

57

	 7.	 To open the DMA tool, select “Launch Microsoft Data Migration
Assistant.”

	 8.	 From Data Migration Assistant, select the + on the side to launch
a new “Assessment” scenario.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

58

	 9.	 We start by running an assessment. Complete the wizard with the

following parameters:

–– Project type: Assessment

–– Project name: assess

–– Assessment type: Database Engine

–– Source server type: SQL Server

–– Target server type: Azure SQL Database

And confirm these options by clicking “Create.”

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

59

	 10.	 This launches the Data Migration Assistant selection window.

Here, click Next to continue.

	 11.	 We now need to connect to our source SQL Server. Therefore,

provide the following information in the wizard:

–– Server name: sqlvm

–– Authentication type: Windows Authentication

–– Username: labadmin

–– Password: L@BadminPa55w.rd

Also flag both options “Encrypt connection” and “Trust server
certificate.”

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

60

	 12.	 Click Connect to continue. This brings up the sources list.

	 13.	 Select SimplCommerce as source database, and select Add, to

add this database to the list.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

61

	 14.	 Next, click the “Start Assessment” button. This runs the

assessment and should take a few minutes to complete. Take note

of the several recommendations under Unsupported features

and Partially supported features.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

62

	 15.	 Once you are familiar with the reported features, you can close

Data Migration Assistant.

This completes the task in which you deployed and ran Data Migration Assistant to

validate compatibility of your source SQL Server database with Azure SQL target.

In a next lab, you will reuse this tool to perform the actual database migration.

�Task 2: Running a web server assessment using Azure
App Service Migration Assistant
In short, you will perform the following tasks:

	 1.	 Install the Azure App Service Migration Assistant on the WebVM.

	 2.	 Perform an assessment of the to-be-migrated web application.

In this task, you download and install the Azure App Service Migration Assistant. We

are using the WebVM directly in this lab, but you can run this from any Windows Server

in the same network as the WebVM virtual machine, meaning you don’t have to install it

on the web server VM itself.

	 1.	 Connect to the WebVM virtual machine using RDP, by selecting

the WebVM from the Virtual machines section in the Azure Portal

followed by selecting Connect and authenticating with labadmin

and L@BadminPa55w.rd as credentials.

	 2.	 From within the WebVM, open an Internet browser, and connect

to the following URL to download the latest version of the Azure

App Service Migration Assistant:

https://appmigration.microsoft.com/

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

https://appmigration.microsoft.com/

63

	 3.	 Click the Download option, to get redirected to the download

page. Here, continue with clicking the Download button.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

64

	 4.	 Once downloaded, launch the AppServiceMigrationAssistant.
msi, which will configure a shortcut on the desktop.

	 5.	 Launch the AppServiceMigrationAssistant. This brings up a five-

step scenario. Select Step 1 “Choose a Site”; here, notice it has

found one site, “Default Web Site.”

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

65

	 6.	 Select “Default Web Site” and click Next to continue.

	 7.	 This results in a detailed assessment report of the web

application. Browse through this report to become familiar with

the gathered information.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

66

	 8.	 Notice we have no errors nor warnings.

	 9.	 Leave this web app migration tool open for now, as you will
reuse it in a following chapter to perform the actual web app
migration. If you close it, you will need to run part of the
assessment again later.

This completes the task in which you installed and ran the App Service Migration

Assistant tool, to identify compatibility and supportability issues of your existing web

application workload, when being migrated to Azure Web Apps.

�Summary
In this lab, you deployed the Data Migration Assistant as well as the App Service

Migration Assistant, to validate your existing e-commerce application environment,

being compatible with Azure Platform as a Service, as part of the assessment phase of

your migration project.

In the next labs, you will reuse these tools to perform an actual migration of the

SQL Server database to Azure SQL, as well as migrating the web application to Azure

Web Apps.

Chapter 4 Lab 2: Performing Assessment of Your As-Is Situation

67
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_5

CHAPTER 5

Lab 3: Deploying an
Azure SQL Database and
Migrating from SQLVM

�Lab 3: Deploying an Azure SQL database
and migrating from SQLVM
�What You Will Learn
In this lab, you perform a migration from a SQL 2014 database running on the SQLVM to

SQL Azure PaaS, using the SQL Data Migration Assistant (DMA), following these steps:

–– Deploy a new Azure SQL Server instance.

–– Authenticate to SSMS on the SQLVM virtual machine.

–– Run the database migration wizard from within DMA.

–– Verify the successful migration of the SQL database from the

VM to Azure.

–– Update the connection strings on the WebVM web application to

point to the SQL Azure database instead of the on-premises one

on SQLVM.

–– Optional: Migrate the database using SQL Server

Management Studio.

https://doi.org/10.1007/978-1-4842-6437-9_5#DOI

68

�Time Estimate
This lab is estimated to take 60 min, assuming your Azure subscription is already

available.

�Prerequisites
Make sure you completed Lab 1 and Lab 2 before starting this lab scenario, as it is

building up on those.

�Scenario Diagram

�Task 1: Deploying a new Azure SQL Server instance
In this task, you start deploying a new Azure SQL Server instance from within the Azure

Portal, allowing you to migrate a database to it in the next task.

	 1.	 From within the Azure Portal “Search resources, services, and
docs (G+/),” enter “SQL servers.” From the list of results, select

SQL servers.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

69

	

2.	� Click “Create a new SQL Server” or click the “+Add” button

in the top menu. This launches the Create SQL Database

Server deployment blade.

	 3.	 Complete the different deployment settings as follows:

Basics tab:

–– Server name: [suffix]sqlazure[date], for example, pdtsqla-
zure0508 (capitals are not allowed)

–– Server admin login: labadmin

–– Password: L@BadminPa55w.rd

–– Confirm password: L@BadminPa55w.rd

–– Subscription: Your Azure subscription

–– Resource group: Create New/[SUFFIX]-SQLAzureRG

–– Location: Same Azure location as where you deployed the WebVM
and SQLVM

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

70

Note A lthough we define the same server admin credentials as the SQLVM SQL
Server instance, these can be completely different in reality. We decide to define
it this way for ease of the lab scenario. Same goes for the SQL Azure resource
location, which can be any of the available Azure regions worldwide, irrelevant
from where your SQL Server virtual machine is running today.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

71

Networking tab

–– Allow Azure services and resources to access this server:
switch to “Yes.”

–– We won’t use the Additional settings tab for now.

	 4.	 Confirm the creation of the Azure SQL Server by clicking the
“Review + create” button.

	 5.	 Validate the deployment summary, and confirm by clicking
Create.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

72

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

73

	 6.	 Wait for the deployment to complete.

	 7.	 Once the Azure SQL Server has been deployed successfully, we

can create a new database, by clicking the “+ Create database”

button from the top menu. From here, we will define two settings,

the database name and the database size:

–– Database name: [suffix]sqlazuredb

–– Compute + storage: Standard S0, 10DTUs, 250 GB storage

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

74

	 8.	 To modify the Compute + storage settings, click “Configure
database.”

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

75

	 9.	 Select “Looking for basic, standard, premium?”

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

76

	 10.	 Define 10 (S0) for DTUs, and keep the Data max size to 250 GB

(know the sample database is about 50 Mb in size, but data size

isn’t really impacting cost within the same allocated DTU size).

	 11.	 Click “Next: Networking”; notice you can’t make any changes

to the firewall or networking settings here. We will make the

necessary changes once the database has been created.

	 12.	 Click “Next: Advanced Settings”; accept the default settings as is.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

77

	 13.	 Confirm the creation of the database by clicking the “Review +
create” button. Validate the configuration settings, and confirm

by clicking “Create.”

	 14.	 Wait for the creation to complete. Once completed, click the

“Go to resource” button, which redirects you to the SQL Azure

database blade.

	 15.	 Here, we will modify the firewall settings, to allow the WebVM

to connect to the Azure SQL Server database later on. Click “Set
server firewall”.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

78

	 16.	 Under Rule name, Start IP, and End IP, enter the following

parameters:

–– Rule name: allow_webVM.

–– Start IP: Enter the public IP address of the WebVM virtual
machine.

–– End IP: Enter the public IP address of the WebVM virtual
machine.

Note T he reason we have the WebVM IP address here is because we will run the
SQL database migration from this server.

	 17.	 Save your settings.

This completes the first task, in which you deployed an Azure SQL Server instance

and a new database. You also configured the necessary firewall settings to allow

communication between the WebVM virtual machine and the Azure SQL Server.

�Task 2: Performing a SQL database migration from a SQL
virtual machine to SQL Azure, using SQL Data Migration
Assistant
In this task, you perform a SQL database migration from within a SQL virtual machine

to SQL Azure. This approach is known as a lift and shift database migration, since no

structure or data will be changed during the actual migration. Continuing on the path of

the Azure migration tools available, you will use the Azure Data Migration Assistant you

used earlier in the assessment phase to perform the actual migration.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

79

	 1.	 Open an RDP session to the WebVM virtual machine (using the

same steps as described in the previous lab).

	 2.	 Once you are logged on to the WebVM RDP session, launch Data
Migration Assistant (from a shortcut on the desktop or Start

menu).

	 3.	 Click “+”, to create a new project.

	 4.	 Provide the following parameters:

–– Project type: Migration

–– Project name: SQLMig

–– Source server: SQL Server

–– Target server: Azure SQL Database

–– Migration scope: Schema and data

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

80

	 5.	 Click the Create button to start this project.

	 6.	 This opens the SQL migration dashboard; in Step 1, complete

the following parameters to connect to the source server:

–– Server name: sqlvm

–– Authentication type: Windows Authentication

–– Encrypt connection: Yes

–– Trust server certificate: Yes

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

81

	 7.	 This will detect the SimplCommerce SQL database running on

the SQLVM. Since you already executed the assessment in the

previous lab, deselect the option to assess database. Click Next to

continue to the next step.

	 8.	 In Step 2, complete the following parameters:

–– Server name: SQL Azure server name ([suffix]sqlazure.data-

base.windows.net)

–– Authentication type: SQL Server Authentication

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

82

–– Username: labadmin

–– Password: L@BadminPa55w.rd

–– Encrypt connection: Yes

–– Trust server certificate: Yes

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

83

	 9.	 This detects the SQL Azure database instance you created earlier.

	 10.	 Click “Next” to continue.

	 11.	 This brings you to Step 3. By default, all tables are selected, which

is ok for our scenario.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

84

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

85

	 12.	 Click the “Generate SQL Script” button.

	 13.	 To run the actual migration, starting with the database schema,

click “Deploy schema.”

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

86

	 14.	 Wait for this step to complete successfully. This should take only a

few minutes.

	 15.	 Lastly, click the “Migrate Data” button to start the actual

database content migration. This will first show a list of tables;

make sure all tables are selected here to not miss any data.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

87

	 16.	 And confirm, by clicking the Start data migration button.

	 17.	 Wait for this process to complete successfully; this should only

take a few minutes, given the rather small-sized sample database.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

88

	 18.	 Once complete, close the Data Migration Assistant, without

saving the changes.

	 19.	 Return to the Azure Portal, and browse to the SQL Azure
database that just got migrated. From the SQL database blade,

select “Query editor (preview).”

	 20.	 Enter the SQL Azure administrative credentials you defined

earlier (default = labadmin and L@BadminPa55w.rd).

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

89

	 21.	 You are prompted with another security warning; although you

are connecting from the browser, the SQL server and database

connection is “seen” as a SQL connection (port 1433) and not an

HTTPS (port 443) connection. Therefore, you need to add your
client IP to the list of firewall exceptions, similar to what you did

for the WebVM.

	 22.	 Click “Set server firewall” [suffixsqlazure].

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

90

	 23.	 Click “+ Add client IP,” which automatically detects your own

client public IP address (JumpVM or your own Internet public IP

address if running this from your own machine).

	 24.	 The Rule base got updated with your ClientIPAddress rule; save

the changes.

	 25.	 From the Azure Portal breadcrumbs link, select the SQL Azure
database.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

91

	 26.	 This brings you back to the SQL Azure database connection blade.

Click OK to set up the connection. This is successful this time.

	 27.	 Click the “>” sign left to Tables, to open the list of tables in the

database.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

92

	 28.	 From the list of tables, select dbo.Catalog_Product. Click the
ellipsis (the three dots) next to it, to open the context menu.

Here, click “Select Top 1000 Rows.” This adds a new query2

item and runs it. The following shows the actual content of the

products table more.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

93

	 29.	 This confirms the SQL Azure database is running as expected and

confirms a successful migration once more.

�Task 3 (Optional): Using SQL Server Management Studio
to migrate from SQLVM to a SQL Azure instance

	 1.	 If your DBA team is familiar with SQL Server Management Studio,

know they can keep using this tool to perform the actual SQL

database migration as well. To use this method, open an RDP
session to the WebVM (labadmin and L@BadminPa55w.rd).

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

94

	 2.	 Next, from within the RDP session of the WebVM, open a second

RDP session to the SQLVM machine (remember, the SQLVM has

no public IP address, not making it reachable from the outside) by

running mstsc.exe from the Start menu.

	 3.	 As server name, type “SQLVM”. (Since both virtual machines are

in the same Azure Virtual Network and subnet, the server name

resolution works.). Click Connect.

	 4.	 Provide the local admin credentials of the SQLVM virtual

machine:

–– labadmin

–– L@BadminPa55w.rd

And confirm with OK.

	 5.	 Once you are logged on to the SQL Server virtual machine

(notice the SQL Getting Started shortcut on the desktop), click

the Start button. Start typing “18”; this will resolve several

management tools available on the server. Notice Microsoft SQL
Server Management Studio 18.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

95

	 6.	 Select it to start the SQL Server Management Studio 18 console.

	 7.	 Once opened, you are asked for server connection information.

Provide the following settings:

–– Server name: SQL Azure server name ([suffix]sqlazure<date>.
database.windows.net

–– Authentication: SQL Server Authentication

–– Login: labadmin

–– Password: L@BadminPa55w.rd

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

96

Note T he reason this connection succeeds from an “internal” SQLVM that is
not internet-facing is because we set the “Allow Azure services and resources to
access this server” on SQL Azure level during the initial deployment. In a real-life
scenario, you would need to configure the SQL Azure firewall and virtual network
settings to allow hybrid connectivity between your on-premises infrastructure and
SQL Azure, integrating with Site to Site VPN or ExpressRoute Networking.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

97

Click Connect to log on to this SQL Server instance.

	 8.	 In order to have a connection to the SQLVM database instance,

we need to add another connection. From the SQL Server

Management Studio console, click File ➤ Connect Object
Explorer. In the Connect to server popup that appears, this time

provide the server credentials from the SQLVM:

–– Server name: sqlvm

–– Authentication: Windows Authentication

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

98

	 9.	 Click the Connect button. (If you get an unsuccessful connection

error because of certificate chain not trusted, click the Options

button and select to Trust Certificate.)

	 10.	 The Object Explorer shows a successful connection to both

databases now. If you open the Databases level, you should see

the SimplCommerce database.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

99

	 11.	 The next step is running the actual migration of the database.

Therefore, select the SimplCommerce database on the SQLVM,

right-click it, select Tasks, and select Deploy Database to
Microsoft SQL Azure Database.

	 12.	 Click the Next button when you see the Introduction step

showing up.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

100

	 13.	 In the Deployment Settings, provide the Server connection by

clicking the Connect button. Provide the following details here:

–– Server connection: <your SQL Server in Azure>[suffix]
sqlazure<date>.database.windows.net

–– SQL Authentication (+provide credentials labadmin and
L@BadminPa55w.rd)

–– New database name: SimplCommerce

–– Edition of Microsoft SQL Database: Basic

–– Max DB size: 2 GB

–– Service Objective: Basic

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

101

	 14.	 Read through the settings in the summary step. Click the Finish

button to start the actual move process.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

102

	 15.	 Wait for this process to complete – this should only take a few

minutes.

	 16.	 Once completed, close the migration window.

	 17.	 This completes the task of migrating a SQL Server database to SQL

Azure using SQL Server Management Studio.

�Task 4: Defining a hybrid connection from a WebVM
to an Azure SQL database

	 1.	 To complete our hybrid cloud migration, we will now update

the Connection strings settings in the appsettings.json file of our

WebVM web application. This information can be retrieved from

the SQL database settings in the Azure Portal. From within the
SQL database detailed blade, browse to Connection strings

under the Settings section.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

103

	 2.	 Leave this information on screen, or copy it into a temp text file,

as you will need to copy parts of the ADO.NET connection string

information into the web server’s web.config file.

	 3.	 Go back to the WebVM virtual machine Remote Desktop session

(or open it again when you already closed the WebVM RDP

session).

	 4.	 Browse to the IIS web server folder that has the web

application content:

c:\inetpub\wwwroot\

Open the file appsettings.json with Notepad.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

104

	 5.	 Go to the section that starts with “ConnectionStrings”.

	 6.	 Replace the following settings with the parameters from the

connection string information in the Azure Portal:

–– Server=tcp:sqlvm=>: Change the sqlvm to <Azure SQL server

name>, nopsqlus.database.windows.net in our example.

–– Uid=sa =>: Change the sa account to labadmin.

Save the changes to the appsettings.json file.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

105

	 7.	 From the Start screen on the WebVM, open a command
prompt, by typing “CMD”.

	 8.	 In the command prompt, run the following command, to restart

the IIS web server service:

iisreset /noforce

	 9.	 To prove that the web application is now connected to the Azure

SQL database, let’s shut down the SQLVM. From the Azure

Portal, navigate to Virtual machines, and click the SQLVM virtual

machine.

	 10.	 From the SQLVM detailed blade, click the Stop button in the top

menu. Wait for the notification message, telling you the VM has

shut down.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

106

	 11.	 To test if the web application is now connected to the Azure

SQL database, browse to the website from within the WebVM’s

browser, connecting to localhost.

	 12.	 The website should load successfully and show you the product

catalog list.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

107

	 13.	 If you receive an error message in the browser, similar to the

following screenshot, it means there is something wrong with

the SQL database connection. Verify your settings again in the

appsettings.json file, and run IISreset again from the command

prompt.

	 14.	 This completes this lab.

�Summary
In this lab, you learned how to deploy an Azure SQL Server resource, as well as how

to migrate a SQL database using Azure SQL Data Migration Assistant and/or the SQL

Server Management Studio 18. You updated the IIS web server appsettings.json file and

validated the web application is now running in a hybrid setup.

Chapter 5 Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM

109
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_6

CHAPTER 6

Lab 4: Deploying an
Azure Web App and
Migrating from WebVM

�Lab 4: Deploying an Azure Web App and migrating
from WebVM
�What You Will Learn
In this lab, you will publish your dotnetcore application source code to an Azure Web

App, out of Visual Studio 2019, sometimes described as “right-click publish.”

In a second task, you will continue on the path of the Azure App Service Migration

Assistant, running the actual web application migration from within that tool to a

different Azure Web App.

In a later lab exercise, you will deploy the same web application using DevOps

concepts.

�Time Estimate
This lab is estimated to take 45 min in total.

�Prerequisites
Make sure you completed Labs 1, 2, and 3 before starting this exercise.

https://doi.org/10.1007/978-1-4842-6437-9_6#DOI

110

�Scenario Diagram

�Task 1: Publish an ASP.NET project to Azure Web Apps
from Within Visual Studio 2019

	 1.	 Log on to the lab jumpVM virtual machine (for your information,

credentials labadmin and L@BadminPa55w.rd), or your own

developer workstation, having Visual Studio 2019 with the latest

updates running.

	 2.	 From the lab jumpVM, browse to the folder that holds

the GitHub downloaded source files (default location =

C:\2TierAzureMigration).

	 3.	 Here, open the subfolder “SimplCommerce31”; this folder

contains all necessary coding files for the SimplCommerce

webshop application we are using.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

111

Note T his folder contains more source files than what we need in this lab, but
don’t delete those, as you will use some of those in the labs coming.

	 4.	 Open the file SimplCommerce.sln, which should open your

Visual Studio 2019 development environment.

	 5.	 Under the SimplCommerce.WebHost solution, notice the

appsettings.json file.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

112

	 6.	 Open this file in the Visual Studio editor.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

113

	 7.	 In order to make our webshop work, we need to update the

database connection string from the current SQLite configuration

to the SQL Azure database connection string.

	 8.	 From the Azure Portal, browse to the SQL Azure database you

migrated earlier ([suffix]azuredb), and open its Connection
strings settings.

	 9.	 Copy the ADO.NET connection string, and replace the

DefaultConnection parameter in the appsettings.json file as

shown in the following example.

Note T he formatting of the connection string might get “lost” when copying;
easiest to bypass this issue is pasting it in Notepad first, before copy/pasting it
directly into the VS editor.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

114

As a reference, this is what the connection string should look like

in full (all needs to be on one single line in the JSON), based on

my setup:

"DefaultConnection": "Server=tcp:simplcsqlpdt.database.

windows.net,1433;Initial Catalog= simplcommercedb;Persist

Security Info=False;User ID=pdtadmin;Password=L@

BadminPa55w.rd;MultipleActiveResultSets=False;Encrypt=True;

TrustServerCertificate=False;Connection Timeout=30;"

Also make sure you replace the {yourpassword} string with the

actual password as shown in the preceding example.

	 10.	 Save the changes made to the appsettings.json.

	 11.	 Let’s validate the webshop app is working fine on the

development station, by starting it in Debug mode.

Note I f you are running this lab from within the JumpVM, you need to allow the
public IP from this connection, connecting to the SQL Server instance in Azure. To
do this, browse to the Azure SQL Server in the Azure Portal ➤ Security ➤ Firewall
and virtual networks.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

115

	 12.	 Add a new rule, named “allow_jumpVM,” having the JumpVM’s
public IP address in the Start IP and End IP fields.

	 13.	 Switch back to your Visual Studio environment, and run the

application by pressing “F5” or clicking the “IIS Express” link in

the top menu

	 14.	 This compiles the application, showing debug information in the

Output window, similar to the following screenshot (this is just

a capture from during the debug; it doesn’t need to be the exact

same).

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

116

	 15.	 After about 30 seconds, the webshop will show up, confirming the

application compiled fine, as well as having connectivity to the

Azure SQL database we migrated earlier.

Note  While off-topic for our lab scenarios, know this is a fully functional
e-commerce application, allowing you to create new customers, place
orders, update products, and so on if you want to extend the demo and also
perform write operations to the database.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

117

	 16.	 This confirms that our web application is working fine. You can

close the browser session, which will also end the Visual Studio

debugging.

This completes the first task in which you loaded a Visual Studio project, updated

packages, made changes to the appsettings.json file database Connection strings

settings, and ran a debug job to validate the e-commerce application is running fine.

In the next task, you will publish the application to Azure Web Apps.

�Task 2: Publishing the source code to Azure Web Apps

	 1.	 From within Visual Studio Solution Explorer, select

SimplCommerce.WebHost, right-click it, and select Publish….

	 2.	 This starts the web application Publish wizard. In the Where are
you publishing today? step, select Azure.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

118

	 3.	 Click Next.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

119

	 4.	 In the Which Azure service would you like to use to host your
application? step, select Azure App Service (Linux). This works

because our application is based on .NET Core, which runs on

both Windows and Linux.

	 5.	 This brings you to the Select existing or create a new Azure App
Service step window.

	 6.	 Click “+ Create a new Azure App Service…,” which opens

yet another popup window, in which you need to enter several

details, related to the Azure Web App name, Azure region, and

App Service plan.

Complete/validate the different parameters:

–– Name: Update the dynamically generated name with a more accurate
one (e.g., [suffix]simplcommercefromvs2019).

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

120

–– Subscription: Select your Azure subscription.

–– Resource group: Create a new resource group/[SUFFIX]
SimplwebAppRG.

–– Hosting Plan: Create a new Hosting Plan, specifying S1 and a
close-by region.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

121

	 7.	 Confirm by clicking Create. The necessary Azure resources are

getting created, which should take only about a minute. After that,

the newly created app service will be listed as selected target for

the web app.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

122

	 8.	 Confirm the deployment by clicking “Finish.” This returns you

to the Visual Studio 2019 Publish window, highlighting your web

app as target for Web Deploy.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

123

	 9.	 Click “Publish” to get the source files pushed to Azure Web Apps,

and you can follow this process from the Visual Studio Output

window.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

124

	 10.	 Wait for the process to complete successfully. At the end, Visual

Studio will open your default browser, where you can validate the

web app is running successfully.

Note I freaked out at first, since my web app was not loading correctly in the
browser – at least not in Internet Explorer 11 (which seemed the default on the
JumpVM still). The following default web app page was shown:

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

125

This could also be an issue with the code compilation itself (although we validated

that in Visual Studio prior to publishing to Azure); however, when using Microsoft Edge or

Chrome (which both are preinstalled on the JumpVM), the site was running as expected:

This completes the task, in which you published the webshop source code to Azure

Web Apps using the Visual Studio Publish wizard integration.

�Task 3: Migrating a web application from Azure App
Service Migration Assistant

	 1.	 Start an RDP session to the WebVM you have running in Azure

(labadmin and L@BadminPa55w.rd).

	 2.	 From the desktop, launch Azure App Service Migration
Assistant. Since we used this tool for performing the web

application assessment in a previous lab, it will remember some of

those parameters.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

126

	 3.	 Select the detected Default Web Site, and click Next.

	 4.	 The tool will perform another assessment first; when complete,

click Next. This is where you will launch and execute the actual

web app migration, starting with authenticating to Azure.

	 5.	 Click “Copy Code & Open Browser,” and paste in this Device

Code in the popup window. Next, log on to Azure with your Azure

admin credentials in the appearing popup. After a successful

authentication, you are prompted to close your browser session.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

127

	 6.	 Back in the Azure App Service Migration Assistant, you can

immediately continue the migration process. The next step is Azure
Migrate Hub, allowing you to add this project to Azure Migrate.

	 7.	 You can skip this step for now, which brings you to the Azure
Options window. Here, you need to provide the necessary

parameters to get the web app deployed and configured:

–– Resource Group: Create a new resource group (the Migration

Assistant will publish this application to a Windows-based web

app, which cannot be mixed with the Linux-based web app service

plan in the same resource group).

–– Destination Site Name: Provide a unique name for the web app.

–– Region: Your Azure region of choice.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

128

Note  The Migration Assistant automatically allocates a “Premium P1” App
Service plan; if needed, this can be changed from the web app settings once the
migration is complete.

	 8.	 In the database setup, choose “Skip database setup.”

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

129

	 9.	 Confirm the settings by clicking the Migrate button.

	 10.	 This kicks off the actual Azure Web App deployment, followed

by creating and copying the content. Wait a few minutes for this

process to complete.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

130

	 11.	 Click “Go to your website,” which will open the newly deployed

web app in the default browser.

	 12.	 This completes this lab.

�Summary
In this lab, you learned how to deploy a web application from source code in Visual

Studio to Azure Web Apps, as well as by using the Azure App Service Migration Assistant.

Chapter 6 Lab 4: Deploying an Azure Web App and Migrating from WebVM

131
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_7

CHAPTER 7

Lab 5: Deploying Docker
and Running Azure
Container Workloads

�What You Will Learn
In this lab, we focus on deploying (a trial) edition of Docker Enterprise on Windows

Server 2019, but using the LinuxKit rather than using Windows containers (just because

we can and it is cool to showcase the mixed environment setup in my opinion). Starting

with installing the Docker Enterprise Edition for Windows Server, you learn the basics

of Docker commands using the Docker command-line interface. Next, you learn how

to “Dockerize” the dotnetcore code that has been used in the former lab, using Visual

Studio Code with Docker extensions.

In the next task, you learn about Azure Container Registry (ACR) and how to publish

your new Docker container in there, as well as using this as a source for Azure Container

Instance (ACI) and running your web application. We will also touch on deploying

and running Azure Web App for Containers, allowing for advanced operations on

containerized workloads, compared to Azure Container Instance.

�Time Estimate
This lab is estimated to take 90 min.

https://doi.org/10.1007/978-1-4842-6437-9_7#DOI

132

�Prerequisites
There are no dependencies on previous lab exercises to start and complete this specific

lab, outside of going through Chapter 2 to grab the necessary source files.

�Scenario Diagram

�Tasks
Task 1: Installing Docker Enterprise Edition on Windows

Server 2019

Task 2: Validating and running basic Docker commands and

containers

Task 3: Integrating Docker extension in Visual Studio Code

Task 4: Deploying and operating Azure Container Registry

Task 5: Deploying and running Azure Container Instance

Task 6: Deploying and operating Azure Web App for Containers

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

133

�Task 1: Installing Docker Enterprise Edition (trial)
for Windows Server 2019 on the lab jumpVM

	 1.	 If not logged on anymore to the lab jumpVM, open an RDP

session to this virtual machine, using labadmin and

L@BadminPa55w.rd as credentials.

	 2.	 From the Start menu, launch PowerShell with Run as
administrator permissions.

	 3.	 Run the following cmdlet:

Install-WindowsFeature -Name Hyper-V -IncludeManagement

Tools –Restart

	 4.	 Status information will be shown.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

134

	 5.	 After which the installation starts.

	 6.	 Once the installation is complete, your machine will restart
(required!); wait for it to reboot, and log on using RDP again,

reopening the PowerShell console (with Run as administrator
permissions).

	 7.	 Next, we will install the Docker Enterprise Edition using the

PowerShell module “DockerMSFTProvider,” using the following

cmdlet:

Install-module “DockerMSFTProvider" –Force

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

135

	 8.	 This is followed by an update-cmdlet to make sure we have the

latest bits:

update-module "DockerMSFTProvider"

	 9.	 Next, we will trigger the actual Docker Enterprise package

installation, executing the following cmdlet:

Install-package Docker -ProviderName

"DockerMSFTProvider" -Update –Force

	 10.	 Once the installation of the package is complete, we also need to

make sure we install the Windows Feature Containers, informing

the host it will run as a container host, by running the following
cmdlet:

Install-WindowsFeature Containers

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

136

	 11.	 This is about it from a Windows Server and module perspective.

However, we need to go through a few more steps to “enable”

the Linux/Linux Containers on Windows – LCOW, starting

with creating a config JSON file for the experimental aspect of

LCOW.

Run the following cmdlet (this is on one line, but wrapped
because of the layout):

Set-Content -Value "`{`"experimental`":true`}" -Path C:\

ProgramData\docker\config\daemon.json

Note I f you can’t complete this step successfully, verify if you have “Show
Hidden items” enabled in your Windows Explorer.

	 12.	 This is followed by restarting the Docker service, using restart-
service Docker.

	 13.	 Confirm the Docker engine is up and running, by executing

Docker version

	 14.	 As well, execute

Docker info

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

137

	 15.	 The Linux Containers on Windows expects a specific folder to

run in, so we need to create this folder first; easiest is using

mkdir <path>:

mkdir "C:\Program Files\Linux Containers"

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

138

	 16.	 This is followed by downloading the “release” version of the

kernel, by launching the following cmdlet:

curl -OutFile release.zip https://github.com/linuxkit/

lcow/releases/download/v4.14.35-v0.3.9/release.zip

	 17.	 Wait for the download to complete; after which, we need to

expand the archive file, running the following cmdlet:

Expand-Archive -DestinationPath . .\release.zip

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

https://github.com/linuxkit/lcow/releases/download/v4.14.35-v0.3.9/release.zip
https://github.com/linuxkit/lcow/releases/download/v4.14.35-v0.3.9/release.zip

139

	 18.	 This completes the installation of the LCOW component; I’m

pretty sure this process will become more straightforward in later

builds of Windows Server 2019, although it is actually not too hard

already.

This completes the first task, in which you installed Docker Enterprise Edition on

Windows Server 2019, using the Linux Containers on Windows (LCOW) Kit. In the

next task, you learn several Docker commands for managing and running container

workloads.

�Task 2: Validating and running basic Docker
commands and containers

	 1.	 Let’s try and run a test Linux container, by executing the
following command:

docker run -it ubuntu

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

140

	 2.	 Since we don’t have the image on our local machine yet, it needs to

be downloaded first; the Docker engine relies on the Docker Hub, a

public (and private) repository of images to pull the image from.

	 3.	 Once the download is complete, Docker will “start up” the
Ubuntu image and run it. This is expressed by giving us access
to the Ubuntu system prompt (root@<containerID>#).

From here, we can perform some basic Linux commands, for

example, “LS,” which means “list,” showing a list of folders.

	 4.	 Or running the command “TOP” will show the list of running

system processes and their performance counters.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

141

	 5.	 To close the performance view, press Ctrl-C, which brings you

back to the system prompt. If you want to shut down the container

(= leaving the runtime), type “exit”.

Note I received an error message here on-screen, informing me about “failed
to shut down container.” This is presently listed as a known issue on the GitHub
pages of the LCOW, although it is more of a bug in the status reporting, as the
running container actually got shut down correctly.

	 6.	 Validate the running state of a container can be done by using the

following Docker command:

Docker ps

	 7.	 This shows no running containers; however, if you add the -a

parameter to this command, it shows us “history” information

about containers that ran on this host.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

142

If you want to test with a few more Linux-based containers (e.g.,

Java, NGINX, Python, etc.) and several others that are available

from hub.docker.com, feel free to do so.

Remember we have our own DotnetCore 3.1 sample container,

based on the webshop application we used in the previous labs.

To speed up the lab, as well as keeping the focus on running

workloads on Azure, I am storing an up-to-date copy of the

containerized application in my Docker Hub as well; so why not

continue with this one from here, as well as for all remaining

container-oriented lab exercises?

	 8.	 The SimplCommerce webshop container image in hub.docker.

com is pdetender/simplcdotnet31. So similar to the “docker run

ubuntu” example earlier, you can execute this command:

docker run -it -p 5000:80 pdetender/simplcdotnet31

Here is some explanation for the parameters:

–– it: Runs the container in interactive mode, which means it will
show output (if any) in the console window.

–– p 5000:80: This defines the container running on port 80,
but mapping this to port 8000 in our local browser; this is
handy when we have other applications or containers already
running on port 80, as such avoiding any conflicts.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

143

	 9.	� Once the container is downloaded and running, open
“localhost:5000” in your browser, which will show the “home

page” of the SimplCommerce web application. Instead of

expecting a full database like we used the Azure SQL earlier, this

sample container image comes with its own built-in database

engine. (If we want, we could update the container variables and

actually point to an external database.)

Select “Phones” and click the “Do it!” button to confirm.

	 10.	 The webshop opens and shows devices available for buying.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

144

	 11.	 While this container instance is running, why not start
another one?

	 12.	 Launch an additional instance of the PowerShell console (with
Run as administrator permissions), and start a new container
instance:

docker run -it -p 4000:80 pdetender/simplcdotnet31

	 13.	 This time it is running on port 4000. Since the image is already
downloaded, the container instance will kick off immediately.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

145

	 14.	 Open your browser, and connect to localhost:4000, which will

show the webshop home page, confirming this is a new instance,

since it is asking again to select the product database we want to

use this time.

	 15.	 This loads the full application once selected.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

146

	 16.	 Switch back to the PowerShell window (either of the open ones),

and run docker images.

This shows a list of all current Docker images available on our

machine. Note that besides the ubuntu and simplcdotnet31, I had

a few additional ones, but you won’t necessarily have these.

	 17.	 Once more, validate the “running” state of your container

instance from a “Docker perspective,” but initiating the following

command:

docker container ls

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

147

	 18.	 As you (should) still have the container instances running (port

4000 and port 5000), you can take note of the (unique instance)
container ID and reuse this in other Docker commands, like

docker inspect 82d44 (where these are the first few characters of

the container ID).

This provides a lot of additional details about our running
container instance:

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

148

	 19.	 For example, consider “LogPath.”

	 20.	 This points to a log-JSON file, viewable from Windows Explorer,

when browsing to the file location.

	 21.	 Open the log-JSON file, and notice the information stored in

there is the same as what you saw earlier in the running container

console (because you specified the “-it” parameter). Good to

know this is not really required (although I personally prefer it,

as it is a useful and easy mechanism to validate your container

workload is running fine).

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

149

This completes the second task, in which you learned several Docker commands,

allowing you to run, validate, and troubleshoot containerized application instances. In

the next task, I will show you another way to manage containers, using Visual Studio

Code – Docker extensions.

�Task 3: Integrating Docker extension in Visual
Studio Code

	 1.	 From the Start menu, launch “Visual Studio Code.”

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

150

	 2.	 From the Extensions option, search for “Docker.”

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

151

	 3.	 Click the “Install” button; while not (always) needed, I typically

advise to restart Visual Studio Code after the installation,

guaranteeing it loads successfully. This helped me tremendously

in troubleshooting, or avoiding to needing to do that 😊.

	 4.	 Notice the Docker extension installed successfully, by clicking
the Docker icon.

	 5.	 From the left menu, it immediately exposes some information
about the Docker environment that is running on the Docker
Host:

•	 Containers: Lists up the running/previously running
containers on this host.

•	 Images: Lists up the container images.

•	 Registries: Private Docker-compatible registries, for example,
Azure Container Registry.

	 6.	 Besides the information here on the left menu, the extension also

comes with command palette options in the “View” menu.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

152

	 7.	 From “Command Palette,” start typing “docker,” showing a list
of different commands available, similar to the ones you used

in PowerShell earlier; but now you don’t (always 😊) have to

remember them or know the correct syntax or parameters, but

rather make use of this list.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

153

	 8.	 Remember the docker inspect command; you can run this now

from the Docker extension menu.

	 9.	 This provides a similar log-JSON file, but directly published

within Visual Studio Code.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

154

	 10.	 Or select “View Logs.”

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

155

	 11.	 This exposes the logging information in a Visual Studio terminal

window.

	 12.	 There are a lot of interesting actions available from the Docker
extension, giving DevOps teams an easy and single tool to
manage their application workloads, from source code to
containers and everything in between.

This completes the third task in which I introduced you to the Docker extension

in Visual Studio Code. As you know the basics of operating Docker and containerized

workloads, let’s move on and reuse this knowledge on Azure.

�Task 4: Deploying and operating Azure Container
Registry
As we have a successfully built Docker container out of the previous task, we can move

on to the next step in the process, migrating this container to Azure, starting from

pushing it into Azure Container Registry (ACR) and running it as an Azure Container

Instance (ACI).

	 1.	 Log on to the Azure Portal, http://portal.azure.com, with your

Azure admin credentials. From here, open Cloud Shell.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

http://portal.azure.com

156

	 2.	 Follow the configuration steps if this is the first time you launched

Cloud Shell, by selecting your Azure subscription and clicking

“Create storage.”

Once you are in the shell environment itself, make sure you select Bash.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

157

	 3.	 Execute the following Azure CLI commands, to create a new
Azure resource group:

az group create --name [SUFFIX]-containersRG --location

<Azure Region Name of choice>

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

158

	 4.	 This is followed by another Azure CLI command to create Azure
Container Registry:

az acr create --resource-group [Suffix]-containerRG

 --name [SUFFIX]ACR --sku Basic --admin-enabled true

	 5.	 The next involves connecting to the Azure Container Registry we

just created and pushing our Docker image into it. This relies on

the following command:

az acr login --name [SUFFIX]ACR --resource-group

[SUFFIX]-containerRG

	 6.	 This means we have to execute the remaining commands from

our local lab jumpVM, instead of the Azure Cloud Shell. Since we

preloaded the Azure CLI on this machine, we can immediately

make use of it (FYI, if you need to install this on your local

machine when not using the JumpVM, use the following link:

https://docs.microsoft.com/en-us/cli/azure/install-

azure-cli-windows?view=azure-cli-latest).

	 7.	 To validate the Azure CLI is installed fine, open a new
PowerShell window, and initiate the following command:

az

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?view=azure-cli-latest

159

	 8.	 This confirms Azure CLI 2.0 is running as expected. We can

continue with our Azure Container Registry creation process. But

first, we need to “authenticate” our session to Azure, by running

the following command:

az login

	 9.	 This opens your Internet browser and prompts for your Azure

admin credentials.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

160

	 10.	 After successful login, the following information is displayed:

	 11.	 You can close the Internet browser.

	 12.	 When you go back to the PowerShell window, it will show you

the JSON output of your Azure subscription, related to this Azure

admin user.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

161

Note I f you should have multiple Azure subscriptions linked to the same Azure
admin credentials, run the following Azure CLI command to guarantee you are
working in the correct subscription:

az account set --subscription "your subscription name here"

	 13.	 Let’s try to redo our Azure Container Registry process, by

executing the following command:

az acr login --name [SUFFIX]ACR --resource-group

[SUFFIX]-containerRG

	 14.	 You can also validate the Azure Container Registry from the

Azure Portal.

	 15.	 And validate the details of the Azure Container Registry resource.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

162

�Task 5: Deploying and running Azure Container
Instance

	 1.	 As we now have connectivity toward ACR, we can push our

Docker image to it. There is however a dependency that the

name of our Docker image needs to have the name of the Azure

Container Registry in it. So we first need to update the Docker

image tag for our Docker image, by executing the following

command:

docker images (to get the image ID number)

docker tag bc2c [SUFFIX]ACR.azurecr.io/<nameyouwanttogive>

docker images (to validate the “new” image)

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

163

Notice the image ID is identical, as technically, all we did was
create a clone with a new name.

	 2.	 Execute the following command to upload this image to the Azure

Container Registry:

docker push [SUFFIX]ACR.azurecr.io/<nameyouwanttogive>

	 3.	 Wait for this process to complete successfully; depending on
Internet connection speed, this might take some time.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

164

	 4.	 From the Azure Portal ➤ All services ➤ Azure Container registries,

select the ACR you created earlier.

	 5.	 Click the <yourcontainername> repository, which opens the

specific details for this image, exposing its version (we used the

default version tag “latest,” but this could also be dev, test, v1.1,

v2.5, etc. in a real-life scenario).

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

165

This completes this task, in which you created an Azure Container Registry (ACR),

tagged a Docker container image, and uploaded this to Azure Container Registry

repositories. In the next task, you will deploy this repository into a running state using

Azure Container Instance (ACI).

�Task 5: Running an Azure Container Instance
from a Docker image in Azure Container Registry

	 1.	 From the Azure Container Registry, browse to Repositories,

select your repository, and click “latest”; from here, click the …

next to latest, and choose Run instance.

	 2.	 This opens the Create container instance blade. Complete the
parameter fields using the following information:

•	 Container name: [suffix]simplcdotnet31 (or any other name you like)

•	 OS type: Linux

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

166

•	 Subscription: Your Azure subscription

•	 Resource group: Select [SUFFIX]-containerRG as resource group

•	 Location: Same location as where you deployed ACR

Leave all other settings unchanged (one core, 1.5 GB memory,

public IP address Yes, and port 80).

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

167

	 3.	 Click OK to have the container instance created. Deployment

initialization kicks off.

	 4.	 Follow the details by clicking the “Your deployment is underway”

from the Notifications area.

	 5.	 Wait for the deployment process to complete successfully, which

should typically be within a minute.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

168

	 6.	 Once the deployment is finished, click Go to resource; or open

the Azure Container Instance in the portal (All services ➤

Container instances), and browse to the ACI “instance” that just

got created.

	 7.	 Copy the IP address for this Azure Container Instance, or directly

browse to it from your Internet browser, which should load your

application successfully.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

169

There’s the webshop again; similar to the “local” Docker container

behavior, it opens the home page, asking for a product offering.

While I’m not showing the outcome here, you already know how

this works.

	 8.	 Back in the Azure Portal ➤ Azure Container instances blade,

browse to Containers under Settings. Within the Events tab,

there are more details about the running container itself, as well as

providing a view on the process of pulling the image and running it.

	 9.	 Next, click the Logs tab, showing you similar output from the

log-JSON option you used earlier by executing “docker inspect”

from the command line or selecting “Inspect” from the Docker

extension in Visual Studio Code.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

170

	 10.	 Return to the Overview section of the Azure Container instances

blade, and notice the action buttons on top, allowing you to start,
restart, stop, or delete the container instance.

	 11.	 Nice to remember is that you don’t pay anything for a
“stopped” container, so it could become handy to stop the

container instance for now, saving a few bucks of your monthly

Azure bill.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

171

	 12.	 Checking back from the instance Overview tab, notice the public

IP address is also “released” from the running instance.

	 13.	 Start the container instance again, by clicking the Start button;

wait a few seconds, and check on the updated settings. The

container instance got a new public IP address.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

172

	 14.	 This is probably not something you want in a production

environment, so let’s spin up a new container instance, this time

starting from the “+ Create Resource,” and search for “container
instance.”

	 15.	 Confirm the creation, by clicking the Create button.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

173

	 16.	 Provide the necessary settings, following these information
guidelines:

•	 Subscription: Your Azure subscription

•	 Resource group: [SUFFIX]-ContainersRG

•	 Container name: Unique name for this container instance

•	 Region: Same Azure region as Azure Container Registry

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

174

•	 Image source: Azure Container Registry

•	 Registry: <Your Azure Container Registry>

•	 Image: <Your Azure Container Repository>

•	 Image tag: latest

•	 OS type: Linux

•	 Size: 1 vcpu, 1.5 GiB memory

	 17.	 Where this is similar to the previous way of deploying an Azure

Container Instance, only driven directly from Azure Container

Registry repositories, we take it a small step further by going

through some additional configuration parameters. Continue by

clicking the Next: Networking button

	 18.	 From the Networking tab, notice the default networking type is
“Public,” allowing a direct connection from the Internet to your

running container instance. Switching this to “Private” allows you

to define what Azure Virtual Network and subnet you want to

deploy this container instance into.

To see this in action, select the jumpvmVNet.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

175

	 19.	 Although the subnet is automatically pulled up from the

JumpVMVNet settings, we cannot use this subnet to mix
container instances with virtual machines. This is also

emphasized from this error message (if you try to deploy this):

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

176

	 20.	 Instead, click “Manage subnet configuration,” which redirects

you to the Azure VNet and Subnet settings. Here, add a subnet, by

clicking the + Subnet button.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

177

	 21.	 From the Add subnet blade, provide the following parameters:

•	 Name: ACISubnet

•	 Address range: 10.1.1.0/24

Leave all other default settings, and confirm by clicking OK.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

178

	 22.	 Refresh the list of subnets; notice the ACISubnet will be in

the list now. Next, click “Create container instance” from the

breadcrumbs link in the portal, which brings you back to the

Azure Container Instance creation wizard.

	 23.	 This time, select the ACISubnet in the Network and Subnet

settings.

	 24.	 Move on to the next step in the ACI creation wizard, by clicking
the Next:Advanced button. Here, one can specify when a

container should restart, where the default is On failure, but

could also be Always or Never.

In the Environment variables section, one could provide

specific application variables, for example, to identify dev/test or

production settings, database connection strings, and the like.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

179

	 25.	 That’s all we need to configure here; continue the deployment by

clicking the “Review + create” button and confirming “Create”
once more by clicking the button. This will kick off the creation

of the second Azure Container Instance.

	 26.	 After about a minute, the private Azure Container Instance is

ready; nothing is really different than before, besides that the IP
address is now an internal IP range–based one; this would mean

the containerized workload is reachable from within the JumpVM

itself.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

180

	 27.	 (If not already) Open an RDP session to the JumpVM server,

and once logged on, connect to the IP address of this Azure

Container Instance from your browser.

	 28.	 Nice, achievement unlocked!

This completes this task, in which you learned about Azure Container Instance
for public Internet-facing running workloads, as well as internal/private running
ones.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

181

�Task 6: Deploying and operating Azure Web App
for Containers
Another method to run containerized workloads in Azure Platform as a Service outside

of Azure Container Instance is Azure Web App for Containers. Easily said, it gives you

all (or most) of the Azure Web Apps features, but instead of publishing source code, you

publish and run a Docker container.

Main differences compared to Azure Container Instance are that it allows for

scalability, supports deployment slot swapping, and is linked to App Service plan

consumption costs, instead of ACI running costs.

That’s what you will deploy and run in this task.

	 1.	 Start from the Azure Portal ➤ Create New Resource ➤

Web App.

	 2.	 Click the Create button to open the Create Web App blade.

Complete the required parameters as follows:

•	 App name: [suffix]contwebapp.azurewebsites.net

•	 - Resource group: [SUFFIX]-ContainerRG

•	 - OS: Linux

•	 - Publish: Docker Image

•	 - Region: Same region as Azure Container Registry

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

182

	 3.	 You also need to define the App Service plan parameters.

	 4.	 For the Service plan parameter, click Create new.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

183

	 5.	 Complete the required parameters for the App Service plan as

follows:

•	 App Service plan: [SUFFIX]contwebappPlan.

•	 Location: Same region as where you want to deploy the Azure

Web App.

•	 Pricing tier: Select the Premium V2 P1v2 plan.

	 6.	 And confirm the plan with OK. Click Next:Docker to continue the

configuration steps.

	 7.	 While we could use the same container from Azure Container

Registry as in the previous task, let’s try something with Public
Docker Hub this time, showing you running container instances

on Azure (in any supported way) doesn’t require Azure Container

Registry.

Complete the following settings and parameters:

–– Options: Single Container

–– Image Source: Docker Hub

–– Access Type: Public

–– Image and tag: pdetender/simplcdotnet31

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

184

	 8.	 Confirm the creation by clicking the Review + create button.

	 9.	 Click the Create button to start the deployment of the Azure Web

App for Containers.

	 10.	 Follow up on the deployment from the Notifications area.

	 11.	 Once deployed, browse to the [suffix]contwebapp Azure
resource, which opens the detailed blade.

	 12.	 Click the URL which opens your default Internet browser. The

containerized webshop workload should be up and running once

more. 😊

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

185

	 13.	 Go back to the Azure Portal, which still has your Azure Web App

for Containers open; here, browse to Settings ➤ Container
settings and look at the Logs section. This shows the different

steps undergoing to get the container running.

	 14.	 For me, this is yet another benefit compared to Azure Container

Instance, which is not giving you the same level of detail on what’s

happening with the container during the creation of the web app

itself, or at least not this easy.

This completes this task, in which you got introduced to Azure Web App for

Containers.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

186

�Summary
In this lab, you learned about installing Docker Enterprise for Windows Server.

Next, you learned the basics of running Linux-based Docker images and containers,

followed by executing several Docker commands that are common when operating

Docker images and containers, as well as how Visual Studio Code extension for Docker

could help you as well.

In the following tasks, you pushed the Docker container to Azure Container Registry

and deployed a container instance running the image. You also learned how to deploy

Azure Web App for Containers, validating each process was working fine and offering a

running e-commerce platform.

Chapter 7 Lab 5: Deploying Docker and Running Azure Container Workloads

187
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_8

CHAPTER 8

Lab 6: Deploying and
Running Azure
Kubernetes Service (AKS)

�What You Will Learn
In this lab, you will learn what it takes to deploy an Azure Kubernetes Service (AKS),

create a Kubernetes YAML deploy file, and run the Docker-containerized webshop

application within the AKS cluster.

�Time Estimate
This lab should take about 45 min to complete.

�Prerequisites
This lab continues on the deployments from Lab 5; make sure you successfully

completed that lab before starting with this one.

https://doi.org/10.1007/978-1-4842-6437-9_8#DOI

188

�Scenario Diagram

�Task 1: Deploying Azure Kubernetes Service using
Azure CLI 2.0

Note  AKS deployment is working awesome from the Azure Portal, as well as
from Azure CLI. To make it easy, let’s switch back to Azure Cloud Shell (Bash) and
run the deployment from there.

	 1.	 From the Azure Portal, open Azure Cloud Shell and select Bash.

	 2.	 Run the following command to create a new Azure resource

group:

az group create --name AKSNativeRG --location

<yourregionofchoicehere>

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

189

	 3.	 Next, run the following command to deploy the actual Azure

Kubernetes Service resource:

az aks create --resource-group AKSNativeRG --name

AKSCluster --node-count 2 --enable-addons

monitoring --generate-ssh-keys

This command starts with creating the service principal, and

moving on with the actual AKS deployment. Note this first part of
the process (after creating the service principal) is not showing
any output and looks like it’s hanging. But it is running fine in
the background though. After a few minutes, the status changes

to Running, which means the actual AKS resources are getting

created now. You can validate this from the Azure Resource
groups view in the portal, where a new RG got created, MC_<nam
eofAKSRG>_<nameofAKSCluster>_region.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

190

	 4.	 Open this resource group, where you can see the different Azure

resources forming the Kubernetes cluster infrastructure getting

created. (This might take away the magic of AKS a little bit, since

technically it is a collection of traditional Azure IAAS components,

like virtual machines, virtual network, load balancer, etc.)

	 5.	 After about 10 minutes, the AKS resource has been created,

as you can notice from the Cloud Shell window, showing you

detailed JSON output with all related parameters and settings of

the created service.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

191

	 6.	 You can also validate this deployment from the Azure Portal, by

browsing to your Kubernetes Service.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

192

	 7.	 Now that you have the Kubernetes cluster up and running, lets

start with connecting to the Kubernetes environment and
validating it is running ok, by performing the following steps:

az aks get-credentials -g AKSNativeRG -n AKSCluster

(Notice how you got introduced to the shorter naming convention

of Azure CLI parameters, -g instead of - -resourcegroup or -n

instead of - -name. 😉)

	 8.	 Next, validate the functioning by checking the nodes, using

kubectl. kubectl (Kube Control) is the command-line

management and operations tool for Kubernetes and already

integrated in Cloud Shell; if you want to manage your AKS cluster

from your local machine, you need to install this kubectl tool first,

following the guidelines in https://kubernetes.io/docs/tasks/

tools/install-kubectl/:

kubectl get nodes

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

193

	 9.	 As you can see here, we have two nodes running, identified with

vmss000000 and vmss000001; this is the default name for Azure

Virtual Machine scale sets. This immediately tells you AKS is ready

for scale. I’ll guide you through how to do that in a later task.

This completes the task in which you deployed Azure Kubernetes Service using

Azure Cloud Shell. In the next task, you learn how to integrate with Azure Container

Registry, picking up your container image to have your containerized workload running

in Kubernetes POD, which is the terminology for a running container in Kubernetes or a

collection of containers.

�Task 2: Configuring RBAC for managing Azure
Kubernetes Service and ACR integration
In the previous step, you deployed the AKS infrastructure and the AKS as a Service

resource in Azure. Using the kubectl get nodes, you validated the underlying Kubernetes

infrastructure is up and running.

Before we can have Kubernetes picking up Docker images from the Azure Container

Registry you deployed earlier, we need to define Azure RBAC (Azure Role-Based Access

Control) permissions for the Kubernetes resource to allow this. You need to create a

service principal object in Azure Active Directory for this, which reflects an identity

object for the AKS cluster.

	 1.	 Create the service principal as follows, from within your Azure
Cloud Shell window:

az ad sp create-for-rbac --skip-assignment -n

AKSClusterSP

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

194

Since we need parts of this information later on, it might be good

to copy this to a Notepad doc for easy retrieval.

	 2.	 This command creates an application ID and provides display

name and tenant information that you’ll need later on in the

Kubernetes YAML file (similar to the Dockerfile we used earlier,

but for Kubernetes deployments).

	 3.	 Next item information we need is the full Azure resource ID for
our Azure Container Registry. This information can be retrieved

using the following command:

az acr show --name [SUFFIX]ACR --query "id" --output

table

Copy this information into your Notepad doc as well, since you’ll

need this information later on.

	 4.	 Next, assign the contributor role for the previously created

“appid” service principal object to this Azure Container Registry

resource, by executing the following command:

az role assignment create --assignee "appid" --scope

"ACRid" --role contributor

This maps like this in my environment (replaced some characters

for security reasons):

az role assignment create --assignee "ae0ad426-af05-

4a6a-0000-00000000" --scope "/subscriptions/0a407898-

c077-0000-0000-7142000000000/resourceGroups/ADS-

dockerRG/providers/Microsoft.ContainerRegistry/

registries/ADSACR" --role contributor

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

195

	 5.	 We also will instruct kubectl (the Kubernetes cluster actually, by

using kubectl) to use a secret, which will be used to get access to

the Azure Container Registry, using the following command:

kubectl create secret docker-registry acr-auth --docker-

server <yourACR>.azurecr.io --docker-username 6956b3da-

0000000 (Appid here) --docker-password a90497d6-

69ea-000000 <app password here> --docker-email <your

email address here>

Here is some explanation of the command information:

–– kubectl create secret: The command to create a secret.

–– docker-registry: Secret is of type “docker registry.”

–– acr-auth: A name you allocate to this secret.

–– docker-server: Azure Container Registry is a docker-compatible

registry.

–– docker-username: Identifies the service principal object that has

permissions.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

196

–– docker-password: Identifies the password of the service

principal object.

–– docker-email: The email account, which could be a Docker

account, but I’m using the Azure admin account email here.

With all the back-end information and the RBAC service principal and permissions

in place, we can build our YAML deployment file for Kubernetes. Key information in

here is the name of your Azure Container Registry, the container image filename that

you want to push to the Kubernetes cluster, and what port the container should run on,

as well as specifying what kubectl credentials you want to use.

This will be performed in the next task.

�Task 3: Running a Docker container image
from Azure Container Registry in Azure
Kubernetes Service

	 1.	 On the lab jumpVM, open Visual Studio Code. Browse to the

source folder you used before, open the Kubernetes subfolder,

and check for a file kubernetes.yml.

The content looks similar to this:

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

197

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

198

	 2.	 Note several parameters that are important for a successful

deployment:

- name: anothercontapp2 (this is just a random name you can

decide on for the POD in AKS).

- replicas: 5 (this defines how many instances of this container

image we want to run within the AKS cluster).

- image: pdtsimplacr… points to the Azure Container Registry

and Docker images we pushed earlier (and the same one we ran

in Azure Container Instance).

- port: 80 (specifies what port the app container should run on).

- imagepullSecrets name: The name of the RBAC contributor.

	 3.	 Replace the following sample parameters in this kubernetes.yml

file with the actual values of your running environment:

- name: firstsample (replace this consistently for all “name”
parameter settings)

- image: [suffix]acr.azurecr.io/simplcdotnet31:latest

(To find the correct image URL, go to the Azure Container Registry

resource ➤ Repositories, select the pushed container image,

and select latest.) You can grab the full URL from the Docker

command option here.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

199

Note  A full-production YAML file for Kubernetes is probably looking more
complex than this, but this is the baseline you need to see it in action.

	 4.	 The updated kubernetes.yml file should now look similar to
this (for my environment):

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

200

	 5.	 Save the updated file.

	 6.	 As this file was edited on the local JumpVM, but we are running

the AKS cluster operations from within Azure Cloud Shell, you

need to upload this file first. From the Azure Cloud Shell window

in the browser, select the “Upload/Download files” icon.

	 7.	 Browse to the kubernetes.yml file on the JumpVM disk.

c:\2tierazuremigration\kubernetes\kubernetes.yml is the default

location.

	 8.	 Wait for the upload to complete.

	 9.	 Running “dir” or “ls” in the Cloud Shell to get a list of items

shows a successful upload.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

201

	 10.	 Next, run the deployment of this Kubernetes Service, by using
the following command:

kubectl create -f Kubernetes.yml

	 11.	 As you can see, this throws an error message, related to the

version of the deployment being used. This means we need to

update our kubernetes.yml file once again. Instead of going back

to the JumpVM Visual Studio Code and uploading the file again

to Cloud Shell, let me introduce you to some “cloud magic” 😊,

running VS Code directly from within Azure Cloud Shell.

	 12.	 Run the following command in Cloud Shell:

code Kubernetes.yml

This directly opens VS Code from within the shell itself! How nice!

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

202

	 13.	 Update the parameter apiVersion to “apps/v1.”

	 14.	 Once edited, click the ellipsis (three dots) in the right-hand

corner of Cloud Shell, and select Save (or press Ctrl-S).

	 15.	 Before we can initiate a new deployment, we need to

make another update to this YAML file, that is, the name of

the deployment. Although the earlier deployment failed, it

is registered as a deployment in Kubernetes. Running this

deployment again will throw another error, saying the name is

already in use.

Therefore, replace the “firstsample” name to “secondsample” (in

all locations).

The easiest way to do this is through Find/Replace; press Ctrl-H,

which opens up the Find/Replace popup (similar to your local

running instance of VS Code, but all done from within the Cloud

Shell – yes, this is an almost full running instance in the browser!).

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

203

	 16.	 Save the changes from the Find/Replace, and once more save the
file.

	 17.	 Close the VS Code instance by pressing Ctrl-Q or selecting the
ellipsis and choosing Close Editor.

	 18.	 Initiate a new deployment, by running kubectl create -f
Kubernetes.yml again; notice this time, the deployment

succeeds.

	 19.	 While this confirms a successful “deployment” task, it doesn’t

mean the containerized workload is already up and running. But

you can follow/validate this process, running some other kubectl
commands:

kubectl get pods

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

204

The reason why it shows five running PODs here is because we

defined the replicas parameter in the YAML file (I’ll drill down on

this high availability/scalability in Chapter 9).

Note  If you should see an error message here, it is most probably related to not
having defined the ACR authentication correctly.

	 20.	 One can also check the actual container services, by running the

following command

kubectl get services

or checking for more details for a specific running service:

kubectl get service --watch

	 21.	 Wait for the service to receive an external IP address, which

would mean the POD is fully up and running in AKS. From

here, you could open your browser and connect to the public IP

address, revealing the e-commerce sample application!

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

205

Note  This can take another few minutes before the app is actually fully loaded,
no panic if it is not showing up immediately!

This confirms that our AKS service is fully operational, and the Docker container

image that we pushed from the YAML file settings is also working correctly. Nice job!

This completes the lab.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

206

�Summary
In this lab, you learned how to deploy Azure Kubernetes Service (AKS) using Azure

CLI, as well as how to manage and validate the deployment using kubectl Kubernetes

command line. Next, you configured RBAC and ACR authentication for a service

principal. This was followed by the creation of a kubernetes.yml deployment file, having

a pointer to the Azure Container Registry repository image to use. After deploying

this container image within the AKS cluster, you validated the functioning using the

EXTERNAL-IP of the AKS service and checked the PODs.

Chapter 8 Lab 6: Deploying and Running Azure Kubernetes Service (AKS)

207
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_9

CHAPTER 9

Lab 7: Managing and
Monitoring Azure
Kubernetes Service (AKS)

�What You Will Learn
In this next lab of this workshop, we will focus on common operations related to

AKS. This includes enabling the basics of container scalability within the platform, as

well as configuring the new Azure built-in monitoring capabilities for these services,

using Azure Monitor for Azure Kubernetes Service.

�Time Estimate
This lab shouldn’t take longer than 60 min.

Note  Depending on the subscription type you are using (e.g., Azure Trial,
Azure Pass, etc.), you might be limited in the number of cores still available for
performing the scale operations discussed in this task. If you are OK with it, you
could delete the WebVM and SQLVM virtual machines to free up cores.

https://doi.org/10.1007/978-1-4842-6437-9_9#DOI

208

�Task 1: Enabling container scalability in Azure
Kubernetes Service (AKS)

	 1.	 AKS provides some nice integration in the Azure Portal, for

example, on how to scale out your Kubernetes Service. From the
Azure Portal, browse to your Azure Kubernetes Service. In the

detailed blade, go to Settings ➤ Node pools.

	 2.	 Here, you can “scale” in two different ways, extending the
amount of nodes in the existing pool or adding a new pool. You

will configure both, starting with adding additional nodes to an

already existing pool. To do this, click the number in the Node
count column (2). This opens the “Scale” blade.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

209

	 3.	 Change the node count to “3,” leaving the Scale method as
Manual. Save the changes by clicking Apply. Wait for the changes

to apply, and validate by refreshing the blade.

	

	

	 4.	 From the Azure Portal, browse to the resource group holding the

Azure resources for Azure Kubernetes Service, identified as MC_

AKSNativeRG_AKSCluster_<region>; here, select the “Virtual
machine scale set”

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

210

	

	

	 5.	 This redirects you to the individual scale set for the AKS Node
Pool.

	

	 6.	 Notice how it identifies 3 out of 3 succeeded as Status; next,

select Instances within the Settings pane.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

211

	

	 7.	 This shows the three nodes running. Clicking any of these would

show more details about the running instance, but mainly from

an Azure infrastructure perspective, not from a Kubernetes

perspective. More on that later…

	 8.	 So now that you know how to extend the number of nodes in your

cluster, let me show you the same, but using kubectl command
line, again from Azure Cloud Shell (Bash):

az aks scale -g AKSNativeRG -n AKSCluster --node-count 4

4

Note  The command takes a couple of minutes to complete, without having
impact on the already running PODs. The result is published in the JSON output.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

212

	 9.	 Let’s switch back to the Azure Portal view and “scale” the AKS

environment by adding an additional node pool. Switch back

to your AKS cluster, by searching for “Kubernetes” in the Search

resources, services, and docs (G+/).

	 10.	 Select your cluster in the list of Kubernetes services.

	

	 11.	 From the AKS cluster details, select Node pools under Settings;

here, click “Add node pool.”

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

213

	

	 12.	 Complete the configuration of the new node pool, using the
following parameters:

–– Node pool name: A name of your choice.

–– OS type: Linux.

–– Kubernetes version: Leave default (know this doesn’t need to
be the same).

–– Node size: Choose a size/DS1 v2.

–– Node count: 1.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

214

	 13.	 You are back in the Node pools blade, where you can see the

second node pool getting created (you might need a refresh to

speed this up).

	

	 14.	 From here, you would technically repeat the same process as

earlier if you want to extend the number of nodes in this second

pool. To free up some resources, let’s delete this second node
pool again.

	

	 15.	 Since adding pools is creating “separate” virtual machine scale

set environments in Azure, it might not always be what you are

looking for in terms of scaling. What if you want to run a larger

amount of identical instances, but maxing out the capacity of

your node pool? This is done using the kubernetes.YAML file (and

something you actually already did). By scaling the actual number

of PODs, using another update in the previously configured

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

215

kubernetes.yml file, you can identify how many identical

instances you want to run.

This is done by running the following command:

kubectl scale --replicas=3 -f <path to yml file>

Which in this scenario scales down the number of replicas from

five to three (remember we defined five replicas in the YAML file

initially).

	 16.	 You can validate the operation using kubectl get PODs and

kubectl get services --watch.

	 17.	 This completes the task on learning different scaling methods in

AKS.

�Task 2: Monitoring Azure Kubernetes Service
in Azure
Azure provides a nice integration (Insights) between standard Azure monitoring

capabilities and the AKS services.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

216

	 1.	 From the Azure Portal, browse to Azure Kubernetes Service,

and select your AKS service. From the Overview pane, you get

a lot of important information about your AKS cluster setup, like

Kubernetes version, amount of nodes/cores, and so on.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

217

	 2.	 Selecting the Capabilities pane next to Properties will open the
detailed blade for this service. Here, select Azure Monitor.

	 3.	 You can reach the same by selecting Insights under the

Monitoring section.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

218

	 4.	 From here, you can get a more detailed view on nodes,
containers, and overall system processes and performance
indicators.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

219

	 5.	 Click “Nodes” to get a more detailed view on amount and status

of nodes.

	

	 6.	 Click “Containers” for a more detailed view of the running

containers.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

220

	

	 7.	 From the list of containers, notice there are a lot of other “system

process” containers, besides the containerized application

(firstsample, secondsample) you published yourself. To get a

clearer view on your own application containers, add it to the

search field.

	

	 8.	 This filters the list of containers; by hovering over the POD

names, you will notice that each “instance” of the secondsample

replica is running in its own “POD,” where if you hover over the
node names, part of them are running on VMSS000000, while

some others are running on VMSS000001 (I couldn’t capture that

little balloon popup in the screenshots).

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

221

	 9.	 While this might (should 😊) be already quite impressive,

especially if you are already familiar with Azure Monitor,

knowing you can read out all this information from within the

Azure Portal, know that Microsoft is working on an even more

detailed view, currently in preview. But that shouldn’t stop me

from showing you.

From the AKSCluster blade, browse to Kubernetes resources

and select Workloads (preview).

	

	 10.	 This again shows a list of all currently running services
(remember kubectl get services -watch?), but nicely integrated in

the Azure Portal. Select “secondsample” as our service workload,

showing additional details for this service.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

222

	

	 11.	 Next, click “YAML”; this exposes an actual YAML file configuration,

almost similar to the one you used for the initial deployment.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

223

	 12.	 This could become handy for documenting your AKS cluster

setup, including running nodes. Or why not make changes to
the actual running state of your service? To show this, edit the
number of replicas from five to two (line 14 in my example),

and save the changes.

	

	 13.	 The YAML file is getting updated, highlighting the change, asking
you to confirm the manifest changes and saving these once
more.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

224

	 14.	 After saving the change and waiting for it to get applied, switch
back to the Overview pane of this detailed view. See how the

number of replicas of the “secondsample” has now gone down to

only two.

	

	 15.	 The same goes for the Services and ingresses topic within the

Kubernetes resources section; by selecting it, a list of currently

running services will be shown, similar to the kubectl get services

command you ran earlier.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

225

	

	 16.	 This time, it also shows the public IP address for each of the

running services (that’s what the ingresses refer to, incoming

traffic from the public Internet).

Note  These last few screens and options are still in preview, which means they
might have changed by the time you go through this exercise yourself. It’s yet
another nice improvement, trying to help Azure customers in managing the AKS
environment, without requiring to be an expert on kubectl commands.

This concludes this part of the task, in which you learned how to manage your AKS

environment from the Azure Portal.

�Task 3: Managing Kubernetes from Visual Studio
Code
Besides the Azure built-in monitoring tools in the previous task, one can also manage

the AKS cluster using Visual Studio Code.

	 1.	 Once Visual Studio Code is launched, from the menu, go to

File ➤ Preferences ➤ Extensions. This shows a list of community

and third-party vendor-provided extensions.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

226

	 2.	 In the Search Extensions Marketplace, type “kubernetes”.

	

	 3.	 Click Install and wait for the extension to get installed

successfully. You will see a shortcut to it in the left menu sidebar.

Click it. Since this extension requires kubectl, which is not

preloaded on the VM, the extension fails.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

227

	

	 4.	 Click “Install dependencies” (only once is ok) and follow the

progress from the terminal window.

	

	 5.	 Once the tools and dependencies have installed, refresh the

Kubernetes extension by clicking its icon in the sidebar. This

time no error messages show up anymore. From the Kubernetes

section, click the ellipsis, and select Add Existing Cluster.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

228

	

	 6.	 You will need to go through a series of questions, to make sure the

extension picks up the correct information.

	 7.	 Cluster type is Azure Kubernetes Service. Click Next >.

	

	 8.	 Select your Azure subscription then click Next >.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

229

	 9.	 Select AKSCluster as Kubernetes cluster. Click “Add this cluster >.”

	

	 10.	 The cluster got added successfully. From the Kubernetes pane,

notice the AKSCluster resource is visible, allowing you to

“manage” the cluster services and components.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

230

	 11.	 Click Deployments.

	 12.	 This shows the earlier pushed deployment for service

“secondsample,” where we have two replicas running. Right-click

any of the running PODs, to see an action menu.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

231

	 13.	 Feel free to perform an action against a running POD, for example,

Delete Now.

This completes the lab exercise.

�Summary
In this lab, you learned the basic admin tasks about scaling Azure Kubernetes Service,

using both the Azure Portal and kubectl command line. Next, you became familiar with

the Azure Monitor capabilities of Kubernetes monitoring, as well as how the built-in

standard Kubernetes dashboard can be used besides the Azure monitoring capabilities.

Last, you deployed the Kubernetes extension in Visual Studio Code and performed some

basic operations against the AKS cluster from there.

Chapter 9 Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)

233
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9_10

CHAPTER 10

Lab 8: Deploying Azure
Workloads Using Azure
DevOps

�What You Will Learn
In this next lab, you get introduced to Azure DevOps, Microsoft’s tooling which allows

for CI/CD pipeline deployments of application workloads to Azure (as well as other

platforms). Starting from creating our Azure DevOps organization and project, you kick

off the process by importing the source code of our sample e-commerce application from

the GitHub repo into Azure DevOps Repos and learn the basics of Git and branching.

Next, you get introduced to creating a build pipeline using the Azure DevOps classic

editor as well as the newer pipeline.yml approach. From here, you will also learn how to

deploy the previously built Docker container and run this in Azure Container Instance,

but deployed using Azure DevOps release pipelines. Lastly, you will deploy the Docker

container to the AKS cluster you deployed earlier, again using Azure DevOps release

pipelines.

�Time Estimate
This lab is estimated to take 90 min.

https://doi.org/10.1007/978-1-4842-6437-9_10#DOI

234

�Prerequisites
This lab continues on the deployments from Labs 3, 4, 5, 6, and 7. Make sure you

successfully completed those, before starting this lab.

�Scenario Diagram

�Task 1: Deploying an Azure DevOps organization

	 1.	 From the “Search for resources, services, and docs (G+/)” field,

search for devops.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

235

	 2.	 Select Azure DevOps organizations.

	 3.	 From the Azure DevOps start screen, click “My Azure DevOps
Organizations”; this redirects you to the dev.azure.com portal,

where you need to provide some additional details about your

user and organizational profile.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

236

	 4.	 Click Continue.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

237

	 5.	 Click Create new organization.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

238

	 6.	 Click Continue.

	 7.	 Provide a unique name for your Azure DevOps organization
and what Azure region you want to use for hosting the projects.
Confirm by clicking Continue.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

239

	 8.	 Wait for this process to complete, after which you are redirected
to the Azure DevOps portal (dev.azure.com/<organizationname>,
where you are asked to create a new project.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

240

	 9.	 Define a project name, and set visibility to private (which
means that only users within your organization can get access
to it). Confirm by clicking the “+ Create project” button; your

Azure DevOps “Workspace” gets created.

This completes the task, in which you deployed Azure DevOps and configured an

Azure DevOps organization. In the next task, you will start using Azure DevOps Repos as

a source control/version control mechanism.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

241

�Task 2: Introduction to source control with Azure
DevOps Repos
The starting point of many successful deployments is source code. This can be application

source code like a dotnetcore web app, but could also be used for Azure templates,

PowerShell scripts, or basically any other data source facing regular updates. A popular

source control solution today is GitHub (www.github.com), which by itself is based on

Git, a distributed source control/version control solution. While GitHub is very useful, it

is mainly used for public and community-based source code publishing. But what if you

want to keep your source code “internal”? Like within your DevOps projects themselves?

That’s what Azure DevOps Repos offers: a Git-compatible source control service.

This task introduces you to the basics of source control, guiding you through cloning

a public GitHub repo into Azure DevOps Repos, from where you will work with versioning

and branching. These changes will be used later on for the build and release pipelines.

	 1.	 From the Azure DevOps portal, select Repos.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

http://www.github.com

242

	 2.	 This gives you several options to choose from, specifying how
this repo will be used. Select “Clone in VS Code.”

	 3.	 Confirm to open this repo in VS Code from the popup box.

	 4.	 This opens VS Code, asking you a confirmation to open the URI
link; confirm this by clicking “Open.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

243

	 5.	 Once opened, you need to specify where VS Code needs to
clone the Azure DevOps Repos folder. Browse to the local C
drive, and create a new folder, named Repossource.

	 6.	 In order to be able to clone, you need to provide your Azure
DevOps credentials.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

244

	 7.	 After which, VS Code will provide you a prompt, asking if you
want to open this folder; select Open in New Window.

	 8.	 From here, let’s at some “source code,” by creating a new file,
typing some text (e.g., Test file to initiate the repo), and save the

file in the root of the Repossource folder; I called my example
“init.md”, but this is not that important. It can be saved as text
file as well, with a name of your choice.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

245

	 9.	 Since the Repossource folder is automatically “Git-enabled,”
thanks to Azure DevOps Repos, we can make use of the source
control extension as part of VS Code. Click the source control
icon.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

246

	 10.	 Notice how it picked up the “init.md” as a change, waiting to
be “pushed” back to Azure DevOps Repos. To do this, click the
“Commit” button.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

247

	 11.	 It will ask you to provide a “message,” which typically refers to
the updates done to the repository (e.g., init repo or anything).

	 12.	 This throws an error message.

	 13.	 What this refers at is that each “git commit” must be linked to an

individual person, in order to trace back who made changes. This

is done by setting “Git variables,” which you didn’t do yet. Click
“Open Git Log,” which redirects you to the “Output” window

of VS Code; for now, the relevant information is executing the

following two commands from the “terminal”:

git config --global user.email “your email address”

git config --global user.name “your name”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

248

	 14.	 Once these variables are set, return to the source control view,
and commit your changes again.

	 15.	 While the commit was done successfully, it doesn’t mean the
file has been uploaded to Azure DevOps Repos yet; VS Code has
a built-in “safety net” (as I call it) to not sync immediately, but
rather waiting for you to trigger this automatically (this could
be handy when you detect mistakes in your source control,
allowing you to edit and commit the change again – all this
happens locally, without impacting the actual Azure DevOps
Repos). To force the sync, click the “sync changes icon.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

249

	 16.	 After a few seconds, you can check back in the Azure DevOps
Repos portal and see the new file you created showing up there.

	 17.	 From Repos, select “Commits”; this shows the trace of your
previous commits, triggered from VS Code. Notice how it
recognizes your “name,” as well as showing the “message” you
provided.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

250

	 18.	 As you now know the sync is working, thanks to Git integration
out of Azure DevOps Repos, we can “upload” the source folder
we used earlier into this Repos. To do this, open your File
Explorer, and browse to the 2tierAzureMigrate source folder.
Select ONLY the SimplCommerce31 folder.

	 19.	 Copy this folder to the target directory “Repossource,” noticing
there is already a subfolder, named after the Azure DevOps
Project.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

251

	 20.	 The content should look like this now:

	 21.	 Once the copy operation is complete, switch back to VS Code,
and open the source control extension. This has picked up all
the changes, ready to be “committed.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

252

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

253

	 22.	 Commit the changes, and provide a descriptive message.

	 23.	 Next, click the “sync changes” icon again, and wait for all files
to get pushed into Azure DevOps Repos. After about a minute,
this should be completed.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

254

This completes the task in which you learned about source control, based on Azure

DevOps Repos. Given the integration with Git, it allows a clone to VS Code (among other

development tools), providing DevOps engineers with the necessary integration to

enable source control, commit changes, and keep source code in sync. In the following

task, you will create a build pipeline, based on this source control repository.

�Task 3: Creating and deploying an Azure build
pipeline for your application
While Azure DevOps gives you an end-to-end solution to manage your application

development and deployment lifecycle, this lab focuses mainly on the Azure Pipelines

service within.

	 1.	 Select “Pipelines,” and within, select “Pipelines” once more.

	 2.	 You are greeted to create your first pipeline.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

255

	 3.	 Click Create Pipeline. This launches the Pipeline wizard,
starting with the source code location.

	 4.	 Select “Azure Repos Git,” followed by selecting the repository
you created earlier.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

256

	 5.	 This brings you to the “Configure your pipeline” blade; based
on the source code, it will offer you different selections. Since
our application is a dotnetcore app, select ASP.NET Core.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

257

	 6.	 This results in an azure-pipelines.YML file, storing the actual
configuration of the build pipeline.

	 7.	 While this file is already quite useful, we are going to make a
few changes to the tasks, outside of the default configuration
offered here. Scroll down to line 24, where you find the task
“VSBuild@1”:

	 8.	 Replace the msbuildArgs line with the following update:

msbuildArgs: /p:DeployOnBuild=true /p:DeployDefault

Target=WebPublish /p:WebPublishMethod=FileSystem

/p:publishUrl="$(Agent.TempDirectory)\WebAppContent\\"

Note this should all be on a single line.

	 9.	 The new layout should be similar to this:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

258

	 10.	 Also verify the indention of the line is at the same level as
solutions, platform, and configuration; these actually define
the parameters (input) for this task. If the indention is wrong,
these will not be recognized however.

	 11.	 Next, below the VSBuild@1 task, add a new task, by inserting
the following lines:

- task: ArchiveFiles@2

 displayName: Archive Files

 inputs:

 rootFolderOrFile: $(Agent.TempDirectory)\WebAppContent

 includeRootFolder: false

	 12.	 The file structure should look as in the following:

	 13.	 Validate the indention of “- task,” making sure it is in line with
the level of the previous task, as well as for the displayName

and inputs.

Last, paste in the following new task “PublishBuildArtifacts@1,”
based on the following lines, at the end of the current file:

- task: PublishBuildArtifacts@1

 inputs:

 PathtoPublish: $(Build.ArtifactStagingDirectory)

 ArtifactName: drop

 publishLocation: Container

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

259

	 14.	 The file structure should look like the following:

	 15.	 Click Save and run; accept the defaults and confirm once more.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

260

	 16.	 This creates your pipeline and initiates the build job against
the Azure DevOps Agents.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

261

	 17.	 Click the job item itself, which opens the more detailed view
of the running job, showing the different steps in the build
process.

	 18.	 Wait for the process to complete. Notice there are several
warnings visible during the VSBuild stage; these can be ignored
for now.

	 19.	 After about 5–6 minutes, the job completes successfully.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

262

This completes the task in which you set up a build pipeline,

based on application source code in Azure DevOps Repos. In the

next task, we will continue the process, by creating and running a

release pipeline, publishing the code to Azure.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

263

�Task 4: Building a release pipeline in Azure DevOps

	 1.	 From Azure DevOps ➤ Pipelines, select Releases.

	 2.	 Next, select New pipeline.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

264

	 3.	 This launches the New release pipeline creation wizard.

	 4.	 From the template list, select Azure App Service deployment.

Provide a description for the Stage name, for example, Deploy_
to_webapp.

	 5.	 Close the Stage window.

	 6.	 The pipeline now looks like this:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

265

	 7.	 Before defining the actual deployment task, let’s add the artifact;

this is the source package for the actual deployment, which you

created during the previous build task. Click “Add an artifact.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

266

	 8.	 Click the Source (build pipeline) drop-down icon, and select
“LearningAzure,” which is the source build pipeline you created

earlier. This will complete some additional parameters.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

267

	 9.	 Confirm by clicking “Add.” The updated pipeline looks like this:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

268

	 10.	 In the Stages field, select “1 job, 1 task”; this is where you will

provide the settings of the Azure Web App environment you will

use for the actual deployment.

	 11.	 Since it’s the first time we integrate Azure DevOps pipelines

with Azure itself, you need to authorize this from the Azure

subscription topic (since your Azure admin and Azure DevOps

admin accounts are the same and have full permissions, this

“just works”; in a production environment, you would configure

a “Service ConnectionPoint” for this, using a service principal

(remember you did something similar for RBAC in the AKS lab?).

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

269

	 12.	 Click Authorize, and authenticate using your Azure admin

credentials. You will notice the list of App Service names is empty.

This makes sense, since we didn’t deploy the Azure Web App
resource yet. While Azure Pipelines could do this from an ARM

template or Azure PowerShell or CLI, let’s do it a bit more manual

for now. (Think of the Ops team providing the Azure resources

and the Dev team (= you) providing the source code for the web

app…)

	 13.	 Switch to the Azure Portal, and create a new resource “web
app,” using the following parameters for the deployment:

–– Resource Group: Create New/FromAzureDevopsRG

–– Name: Unique name of your choice

–– Publish: Code

–– Runtime stack: .NET Core 3.1

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

270

•	 Operating System: Windows

•	 Region: Region of choice

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

271

	 14.	 Accept the defaults for the App Service plan.

	 15.	 Confirm the creation by clicking Review + create and once
more Create. Wait for the deployment to complete.

	 16.	 The baseline is ready, so let’s switch back to Azure DevOps
Pipelines and complete the following settings:

–– App type: Web App on Windows

–– App service name” <name of the web app you just created>

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

272

	 17.	 Next, click the task “Deploy Azure App Service.”

	 18.	 Validate the setting “Package or folder” looks similar to this:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

273

This refers to the webdeploy package you created out of the
build pipeline.

	 19.	 When done, click Save in the top menu of your Azure Pipelines

project, and click OK for the popup showing the folder (“\”) where

to store this information, followed by Create release.

	 20.	 Accept the default settings.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

274

	 21.	 And confirm the creation.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

275

	 22.	 Click “Release-X” in the confirmation bar.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

276

	 23.	 Click the “In progress” status, and wait for this process to
initialize.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

277

	 24.	 This shows the detailed progress for each and every step in the
process; wait for the task to complete.

	 25.	 The release pipeline shows this Succeeded status as well.

	 26.	 From the Azure Portal, browse to the Azure Web App you selected

in the release pipeline as target, and validate it is running as

expected.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

278

	 27.	 If you should receive the following web page instead of
the webshop itself, it typically means there is no database
connectivity; validate your SQL Azure database is present, as
well as checking if you (still) have the database connection
string in the appsettings.json file in the Azure DevOps Repos
SimplCommerce31\src\Simplcommerce.webhost\ folder.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

279

	 28.	 If you receive the following web page instead of the webshop
itself or the HTTP Error 500.30, it means you were a bit too
fast 😊; waiting for a few seconds and refreshing the website
typically fixes this. You could also try to stop and start the web
app again to force the publishing.

This completes the task in which you created a release pipeline, based on a previous

build pipeline configuration, allowing you to publish an Azure Web App.

�Task 5: Creating and pushing a Docker container
to ACR
In one of the previous labs, you learned the basics of Docker commands and how

to push an existing Docker Hub container image to Azure Container Registry. Most

probably at that time, you were wondering how to create a Docker container yourself,

right? Since this felt a bit more “DevOps” in character, I decided to keep it for the Azure

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

280

DevOps module. So here we are, where I will guide you through creating a Dockerized

container image, based on the webshop source code, and pushing this container image

to Azure Container Registry, all done by Azure DevOps.

	 1.	 Let us start with creating a new Azure DevOps Project (this is not really

required out of Azure DevOps itself, but just feels more organized to

me), by clicking “Azure DevOps” in the upper-left corner in the
Azure DevOps portal and clicking “+ New project.”

	 2.	 Provide a project name, keep visibility to private, and confirm by

clicking Create.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

281

	 3.	 Once the project got created, select Repos, where you will “import

a repository.”

	 4.	 Provide the following URL:

https://github.com/simplcommerce/simplcommerce.git (know

this repo is managed by SimplCommerce itself, not by me; since

it is getting continuously updated, I thought it was more safe to

provide this one, to make sure the container build steps keep

working)

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

https://github.com/simplcommerce/simplcommerce.git

282

	 5.	 The import process starts.

	 6.	 Once the import succeeded, the Repos structure looks like this:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

283

	 7.	 Next, create a new (build) pipeline, by selecting Pipelines ➤
Create Pipeline.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

284

	 8.	 This launches the Create Pipeline wizard. In the “Where is your
code?” step, select Azure Repos Git.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

285

	 9.	 Click Next. Select “SimplCommerce” as the repo to use.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

286

	 10.	 This builds up an azure-pipelines.yml file, looking similar to
this one:

	 11.	 Notice it offers different jobs, for different Operating System Build

Agents (Mac, Linux, Windows); this is because the application is

developed in dotnetcore, which is supported to run on each of

those platforms.

	 12.	 This creates the new job.

	 13.	 Select the job, which shows more details for the running job(s).

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

287

	 14.	 You could select any of the jobs to get even more details about
the build process itself; since you already did that in earlier tasks,

I’ll skip that for now.

	 15.	 Return to Azure DevOps Pipelines, and create yet another one.

When you are asked where the source code is, select “Azure
Repos Git.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

288

	 16.	 Next, you need to select the repository to use. Here, select
“SimplCommerce.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

289

	 17.	 Next, in the Configure your pipeline step, select “Docker – Build
and push an image to Azure Container Registry.”

	 18.	 Next, select your Azure subscription and confirm by clicking
“Continue”; this will prompt you for your Azure admin

credentials.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

290

	 19.	 Once authenticated, select your Azure Container
Registry from the list, and update the container name to
“devopssimpl[suffix].”

	 20.	 Click “Validate and Configure,” which produces an azure-
pipelines.yml file, looking like the following screenshot:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

291

	

	 21.	 Confirm by clicking “Save and run.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

292

	 22.	 Provide a descriptive name in the Commit message field, and

confirm by clicking Save and run again, which creates the
pipeline.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

293

	 23.	 Click the “Build” job, to open more details about the job. Notice
how each step in the Dockerfile gets processed.

	 24.	 If you follow along in the container build process, you will
notice that all the way at the end how the name gets tagged to
the container, followed by the Docker Push command for this
container image.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

294

	 25.	 Validating this process from the Azure Portal itself shows the
successful push as well.

This completes the task in which you learned how to containerize an application

using Docker build pipelines.

�Task 6: Creating a release pipeline for Docker
containers from ACR
Similar to the previous release pipeline from source code in GitHub to a published Azure

Web App, we can use the same concept to create a release pipeline, based on a Docker

container in Azure Container Registry. This is similar to the manual task you ran in Lab 4

earlier.

	 1.	 From Azure DevOps, select Pipelines ➤ Releases ➤ New release
pipeline.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

295

	 2.	 When the template window appears, close it, and select “Add
an artifact” first.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

296

	 3.	 From the Add an artifact blade, click “5 more artifact types,” to

extend the list of artifacts to choose from.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

297

	 4.	 Select “Azure Container Registry.”

	 5.	 Complete the parameters according to the existing resources in

your Azure subscription, reusing the resources from previous lab

exercises (Azure Container Registry, repository, etc.).

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

298

	 6.	 Confirm the artifact selection, by clicking Add.

	 7.	 Your artifact will be completed.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

299

	 8.	 Next, click Stages ➤ Add a stage, and select Azure App Service
deployment.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

300

	 9.	 Confirm with Apply; provide a descriptive name for the stage,
for example, “Deploy to webapp for containers.”

	 10.	 Close the Stage popup, followed by selecting the “1 job, 1 task”
item in the pipeline view.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

301

	 11.	 Provide the required parameter for your Azure subscription,
and specify “Web App for Containers (Linux)” for App type.

	 12.	 Complete the additional parameters for Azure Container
Registry and image. Note you have to provide these values
yourself; they are not pulled from a list box like in the previous
task when publishing the web app. These are the screenshots
from the Azure Portal to help you in finding this information:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

302

	 13.	 The deployment parameters should look similar to my
screenshot:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

303

	 14.	 Click “Save,” and confirm the popup as OK, followed by “Create
release.”

	 15.	 Validate the settings for this new release pipeline.

	 16.	 And confirm the deployment by pushing the Create button.
This creates Release-1.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

304

	 17.	 Click “Release-1” to open the detailed deployment blade
(depending on how fast you do this, the state could be Queuing,
Running, or Completed).

This kicks off the release creation; follow the different steps

occurring, and wait for them to complete successfully.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

305

	 18.	 Once the task is complete, you can see its overall status from the

Pipeline window.

	 19.	 Check back in Azure Web Apps if your app is running successfully,

by connecting to the Azure Web App URL for this Azure resource.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

306

This completes the task in which you created a new Azure Pipelines release,

deploying an Azure Web App for Containers, relying on a repository in Azure Container

Registry.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

307

�Task 7: Creating an Azure DevOps pipeline to deploy
an ACR container to Azure Kubernetes Service
(AKS)
In this scenario, you will create yet another Azure release pipeline, this time pushing a

container from ACR into the earlier deployed Azure Kubernetes Service cluster.

	 1.	 From Azure DevOps, select Pipelines ➤ Releases ➤ New release
pipeline.

	 2.	 Close the appearing template window, and return to Artifacts;
click “Add an artifact.”

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

308

	 3.	 Repeat the steps from the previous task, selecting Azure
Container Registry as source and selecting the ACR and
container repository you want to use for this deployment.

I show you my settings as illustration:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

309

	 4.	 Next, select “Add a stage,” and select the Deploy to a Kubernetes
cluster” template.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

310

	 5.	 Confirm by clicking Apply; provide a descriptive name for the
stage, for example, Deploy_to_AKS.

	 6.	 Close the Stage popup, which returns you to the Release
Pipeline window. Click “1 job, 1 task” under Stages.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

311

	 7.	 Select “kubectl,” and provide the necessary settings and

parameters of the AKS cluster you deployed in a previous lab,

knowing you only need to provide the Kubernetes service
connection name.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

312

	 8.	 To create this one, click “+ New” next to it, which opens the New
service connection blade; your Azure subscription will get resolved,
as well as asking you for your Azure credentials. After successful
logon, you can complete the Kubernetes cluster information and
namespace, similar to what it looks like in my setup:

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

313

	 9.	 Click Save; the pipeline definition shows the Kubernetes
service connection now. Since you already defined the
namespace in the service connection settings, you can leave
that field blank here.

	 10.	 Confirm the settings using Save and Release.

	 11.	 Click Create release from the pipeline confirmation window.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

314

	 12.	 The release is getting created.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

315

	 13.	 Click “Release-1,” to open the detailed view of the release task.

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

316

	 14.	 This results in a successful job.

Note T he full deployment process is much much much more powerful and
provides many more settings than we had here, but this is mainly to allow you to
experience what a base deployment release pipeline can do and how to configure it.

This completes the task in which you created a new Azure release pipeline for a

deployment of an ACR-stored repository to an existing Azure Kubernetes cluster.

�Summary
In this lab, you performed several tasks around Azure DevOps, starting from the initial

creation of an Azure DevOps organization, followed by creating an Azure DevOps build

pipeline, using a GitHub repository with an application’s source code. In the next task,

you created a release pipeline, deploying the build from the previous task, publishing an

Azure Web App.

The following tasks involved creating an Azure DevOps release pipeline to publish

an Azure Container Registry repository image to Azure Container Instance, as well as to

publish to Azure Kubernetes Service.

Congrats if you completed all labs with all tasks from all modules. You should
now have a real good understanding of Azure and where it can help in your overall
digital transformation. Reach out when having any questions or concerns or wanting
to share overall feedback about the lab content used in this book (peter@pdtit.be or
@pdtit on Twitter). Have a nice day!

Chapter 10 Lab 8: Deploying Azure Workloads Using Azure DevOps

317
© Peter De Tender 2021
P. De Tender, Migrating a Two-Tier Application to Azure, https://doi.org/10.1007/978-1-4842-6437-9

Index

A, B
App Service Migration Assistant, 62–66
Azure Container Instance (ACI),

1–3, 131, 132, 155, 165, 169, 174
Azure Container Registry

(ACR), 2, 3, 131, 279
ACI, 155
admin credentials, 159, 160
Azure Portal, 161
CLI commands, 157, 158
PowerShell window, 160

Azure Container Workloads
ACR, Docker image

ACI instance, 168
ACISubnet, 178
choose run instance, 165
connect to IP address, 180
container instance, 165, 167, 172,

173, 179
copy IP address, 168
logs tab, 169
manage subnet configuration, 176
networking button, 174
stop container, 170

deploying/operating, 181, 183–185
deploying/running ACI, 162–164
Docker-extensions,

VSC, 149, 151, 152, 154, 155

Azure DevOps
ACR container, AKS, 307, 310, 311,

313, 316
build/release pipeline, 2–279
creating/deploying pipeline, 254,

256–259, 261
creating/publishing Docker container,

ACR, 279–281, 283, 285, 286, 288,
289, 292–294

creating/release pipeline, Docker
containers, 294, 297, 298, 300–302,
304, 306

deploying organization, 234, 237–240
Repos, source control, 241, 242, 244,

247–249, 253, 254
build/release pipelines, 242

Azure Kubernetes Service (AKS), 1–3
ACR integration, 193–196
Azure CLI 2.0, 188–191, 193
container scalability, 208–212, 214, 215
Docker container image, 196, 198,

200–205
monitoring, 215, 217–221, 223, 225
RBAC, 193–196
Visual Studio Code, 225–227, 229–231

Azure Resource Manager (ARM)
template, 3

admin credentials, 26
azuredeploy.json, 30

https://doi.org/10.1007/978-1-4842-6437-9#DOI

318

AzureResourceGroup44.sln file, 28
Azure resources, 24
deployment, Visual Studio (see Visual

Studio 2019)
files, 30
open project/solution, 28
Solution Explorer view, 29
theme, 27
time estimate, 23
Visual Studio, 25

Azure Role-Based Access Control
(Azure RBAC), 193

Azure Web App
migrating web application,

125, 127, 129, 130
publish ASP.NET project,

110, 111, 113–117
publish source code, 117, 119, 121,

124, 125

C
CI/CD pipeline deployments, 233
Containers as a Service (CAAS), 1

D, E, F
Data Migration Assistant (DMA),

see SQL server assessment
Data Migration Assistant (DMA),

57, 59, 62, 67
Desired State Configuration (DSC), 3, 39
Docker commands and containers

validating/running
docker images, 146
instance, 147

log-JSON file, 148
SimplCommerce webshop

container image, 142, 143, 145
test Linux container, 139–141

Docker Enterprise Edition,lab jumpVM
DockerMSFTProvider, 134
installation, 134
Install-WindowsFeature

Containers, 135, 136
LCOW component, 139
Linux Containers, 137
PowerShell, 133
update-cmdlet, 135

G, H
GitHub setp scripts, 20, 21

I, J, K
Infrastructure as a Service (IAAS), 1, 2
Infrastructure as Code (IAC), 2, 3, 24
Internet Information Services (IIS), 1, 42

L
lab jumpVM

azuredeploy.json, 11
Azure Marketplace, 8
Azure subscription, 8
content, 12
credentials, 18
custom deployment, 9
Edit template blade, 13
Microsoft.Template, 16
networks, 19
notifications area, 15, 16
RDP file, 18

Azure Resource Manager (ARM)
template (cont.)

Index

319

required fields, 14
resource groups, 16
source files, 10
template deployment, 9
terms and conditions, 15
warning massage, 19

Lab virtual machine (VM)
exercises, 7
time estimate, 7

Linux Containers on
Windows (LCOW), 136, 137, 139

M
Microsoft assessment tools, 2, 51

N, O
Network Security Group (NSG) rules, 17

P, Q
Platform as a Service (PAAS), 1, 2, 66, 181

R
Remote Desktop (RDP), 5, 19, 53, 103

S
Server assessment

scenario diagram, 51
SQL, 52
time estimate, 51
web server (see Web server

assessment)
SQL database migration

administrative credentials, 88
breadcrumbs link, 90

client IP address, 90
connection blade, 91
data migration assistant, 79
deploy schema, 85
firewall setting, 89
migrate data, 86
parameters, 79–81
query, 92
query editor (preview), 88
RDP session, 79
scenario diagram, 68
script, 85
security warning, 89
SimplCommerce, 81
steps, 67
tables, 83, 91
time estimate, 68

SQL server assessment
connect server, 60
credentials, 53
download DMA, 54
features, 61
launch DMA, 55, 57
parameters, 58, 59
security warning, 54
SimplCommerce, 60
tasks, 52
WebVM, 52

SQL Server instance
advanced settings, 76
basic tab, 69
configuration settings, 77
configure database, 74
create SQL Server, 69
database blade, 77
database name/size, 73
firewall settings, 77
networking tab, 71, 76

Index

320

parameters, 78
validation, 71

SQL Server Management Studio
admin credentials, 94
18 console, 95
mstsc.exe, 94
Object Explorer, 98
RDP session, 93
server connection

information, 95, 100
server credentials, 97
SimplCommerce, 99
SQLVM, 94

T, U
Technical requirements

Azure subscription, 4
GitHub repository, 6
local client admin machine, 5
naming conventions, 5
Operating System, 5
tools, 5

V
Virtual machine (VM), 1, 110, 133, 175
Visual Studio 2019

AzureResourceGroup44
project, 32

connect to Server, 46
credentials, 42, 44
dbo.Catalog_Product, 48
edit parameters, 33, 34

Internet Information Services
Manager, 43

list of products, 49
Microsoft Remote Desktop

Connection, 43
name, 37
Output window, 35, 38
resource groups, 36
settings, 32
SimplCommerce, 40, 47
SQL management, 46
sqlvm, 44
WebVM virtual machine, 39

W, X, Y, Z
Web server assessment

choose a site, 64
download App Service Migration

Assistant, 62, 63
launch App Service Migration

Assistant, 64
report, 65
tasks, 62
WebVM, 62

WebVM
appsettings.json file, 104
command prompt, 105
connection strings, 102
error message, 107
IIS web server, 103
parameters, 104
product catalog list, 106
SQLVM, 105
web.config file, 103

SQL Server instance (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Migrating a Two-Tier Application to Azure Using Different Architectures and DevOps Best Practices
	Setting the Scene

	Abstract and Learning Objectives
	Technical Requirements
	Azure Subscription
	Naming Conventions
	Other Requirements
	Alternative Approach
	Final Remarks

	Chapter 2: Prerequisite Lab: Deploying Your Lab Virtual Machine
	Prerequisite lab: Preparing your (Azure) environment
	What You Will Learn
	Time Estimate
	Task 1: Deploying the lab jumpVM virtual machine using Azure Portal template deployment
	Task 2: Cloning the setup scripts from GitHub

	Summary

	Chapter 3: Lab 1: Deploying an Azure Virtual Machine Baseline Application Workload
	Lab 1: Deploying the baseline virtual machine environment using an ARM template from within Visual Studio 2019
	What You Will Learn
	Time Estimate
	Prerequisites
	Task 1: Understanding the ARM template building blocks
	Task 2: Running an ARM template deployment from Visual Studio 2019
	Summary

	Chapter 4: Lab 2: Performing Assessment of Your As-Is Situation
	Lab 2: Performing assessment of your as-is situation
	What You Will Learn
	Time Estimate
	Prerequisites
	Task 1: Running a SQL Server assessment using Data Migration Assistant
	Task 2: Running a web server assessment using Azure App Service Migration Assistant

	Summary

	Chapter 5: Lab 3: Deploying an Azure SQL Database and Migrating from SQLVM
	Lab 3: Deploying an Azure SQL database and migrating from SQLVM
	What You Will Learn
	Time Estimate
	Prerequisites
	Scenario Diagram
	Task 1: Deploying a new Azure SQL Server instance
	Task 2: Performing a SQL database migration from a SQL virtual machine to SQL Azure, using SQL Data Migration Assistant
	Task 3 (Optional): Using SQL Server Management Studio to migrate from SQLVM to a SQL Azure instance
	Task 4: Defining a hybrid connection from a WebVM to an Azure SQL database

	Summary

	Chapter 6: Lab 4: Deploying an Azure Web App and Migrating from WebVM
	Lab 4: Deploying an Azure Web App and migrating from WebVM
	What You Will Learn
	Time Estimate
	Prerequisites
	Scenario Diagram
	Task 1: Publish an ASP.NET project to Azure Web Apps from Within Visual Studio 2019
	Task 2: Publishing the source code to Azure Web Apps
	Task 3: Migrating a web application from Azure App Service Migration Assistant

	Summary

	Chapter 7: Lab 5: Deploying Docker and Running Azure Container Workloads
	What You Will Learn
	Time Estimate
	Prerequisites
	Scenario Diagram
	Tasks
	Task 1: Installing Docker Enterprise Edition (trial) for Windows Server 2019 on the lab jumpVM
	Task 2: Validating and running basic Docker commands and containers
	Task 3: Integrating Docker extension in Visual Studio Code
	Task 4: Deploying and operating Azure Container Registry
	Task 5: Deploying and running Azure Container Instance
	Task 5: Running an Azure Container Instance from a Docker image in Azure Container Registry
	Task 6: Deploying and operating Azure Web App for Containers
	Summary

	Chapter 8: Lab 6: Deploying and Running Azure Kubernetes Service (AKS)
	What You Will Learn
	Time Estimate
	Prerequisites
	Scenario Diagram
	Task 1: Deploying Azure Kubernetes Service using Azure CLI 2.0
	Task 2: Configuring RBAC for managing Azure Kubernetes Service and ACR integration
	Task 3: Running a Docker container image from Azure Container Registry in Azure Kubernetes Service
	Summary

	Chapter 9: Lab 7: Managing and Monitoring Azure Kubernetes Service (AKS)
	What You Will Learn
	Time Estimate
	Task 1: Enabling container scalability in Azure Kubernetes Service (AKS)
	Task 2: Monitoring Azure Kubernetes Service in Azure
	Task 3: Managing Kubernetes from Visual Studio Code
	Summary

	Chapter 10: Lab 8: Deploying Azure Workloads Using Azure DevOps
	What You Will Learn
	Time Estimate
	Prerequisites
	Scenario Diagram
	Task 1: Deploying an Azure DevOps organization
	Task 2: Introduction to source control with Azure DevOps Repos
	Task 3: Creating and deploying an Azure build pipeline for your application
	Task 4: Building a release pipeline in Azure DevOps
	Task 5: Creating and pushing a Docker container to ACR
	Task 6: Creating a release pipeline for Docker containers from ACR
	Task 7: Creating an Azure DevOps pipeline to deploy an ACR container to Azure Kubernetes Service (AKS)
	Summary

	Index

